学年

教科

質問の種類

物理 高校生

物理のエッセンス 力学 74 運動方程式 解答では発射された質量mのガスを正と仮定していますが、私はロケットとは逆方向だと仮定し負にしました。 3枚目が私の考え方なのですが、合っていますでしょうか?

60 力学 以下,滑らかな水平面上での現象とする。 70 2kgの球Pと10kgの球Q が図のように衝突し た。 衝突後のQの速度を求めよ。 71* 静止している質量Mの木片に質量mの弾丸が速 さひで突き刺さった。 木片の速さを求めよ。 ま た、系から失われた力学的エネルギーEを求めよ。 72* 質量Mの粗い板が置かれている。 質量mの物体 が速さで飛んできて, 板上をすべり,やがて板 に対して止まった。 最後の全体の速さ”はいくらか。 運動工か? なんでだ... 73 静止していた物体が,質量mとMの2つに分裂し した。両者の速さの比v/Vと運動エネルギーの比をそ れぞれ, m, M で表せ。 m vo 6m/s 3m/s Po- mvo ■ 運動量保存則はベクトルの関係だから,直線上に限 らず,平面上で起こる衝突・分裂に対しても成り立つ (証 明は前ページちょっと一言と同じ)。 そのような場合には x,y 方向それぞれの成分について式を立てる。ときに は,運動量のベクトル図を描いて考えてもよい。 High 物体系に働く外力の和が0とな Miss 摩擦があると運動量保存則が使えないと思う人が多い。 でも物体と 板の間の摩擦は内力だ。 作用・反作用 3m/s M V A M 0? m トク 静止からの分裂速さは(運動エネルギーも) 質量の逆比 ムズム 74* 速さ Voで進む質量Mのロケットから質量mのガスを後方に噴射したとこ ろ, ロケットから見てガスはuの速さで遠ざかった。噴射後のロケット(質量 M-m) の速さ Vはいくらか。 相対速度の考え方 M V2 V2

解決済み 回答数: 1
物理 高校生

③の問題について、解説の赤線の部分で、pとbを逆にしてはいけないのは何故ですか?

1 次の文章中の空欄①, ②. ④ 〜 ⑨ を数式で,③)を語 句で埋めなさい。 図のように、斜面と水平面と円筒面がなめらかにつな がった経路上での、小球の運動を考える。 斜面上の点A から小球Pを静かに放すと、小球Pは斜面を下ったのち 水平面上の点Bで小球Qに衝突した。 衝突ののち小球Q が運動を開始し, 円筒の内部に導かれて内壁に沿って運 動した。 小球の運動は鉛直面内で起きるものとする。 重 力の作用する方向は鉛直下向きで,重力加速度の大きさをgとする。小球の大きさおよび経路上の摩擦や 空気抵抗は無視できるものとする。 B の比で決まり、 小球 P M m M と表される。 PUA VB A h 0 (iⅰ) はじめに小球Pは斜面上の点Aで静止している。斜面の傾きを0とし、小球Pの質量をMとする。こ のとき斜面から小球Pにはたらく垂直抗力Nは, 0, M, g を用いて N = ( ① ) と表される。 点Aの水 平面からの高さをんとする。 小球Pが斜面を下ったあと, 水平面を移動する速さは, 0, M,g,hの中か ら必要なものを用いて,ぃ= ( ②2 ) と表される。 (i)次に小球Pは,この速さで、点Bに静止している質量mの小球Qに衝突した。 衝突の前後で小球Pと 小球Qの運動エネルギーの和は変化しないとする。 この条件を満たす衝突は ( ③ ) 衝突と呼ばれる。 このとき、衝突の直後に小球Pと小球Qが互いに遠ざかる速さ(相対速度の大きさ)は①と等しい。 衝突 の前後で運動量が保存されることを考慮すると, 衝突後の小球Qの速さ vs は, v, M, m を用いて, UB = ( ④ ) と表される。 この衝突の直後に小球Pが小球Qと同じ方向に運動する条件は, v, M, mか ら必要なものを用いて, M>( 5 ) と表される。 (Ⅲ) 続いて小球Qは、この速さひで,直径んの円筒の内部に進入し、内壁に沿って運動した。 小球Qは経路 の途中で内壁から離れないものとすると、 経路の最高地点Cで速さが最小になる。 点Cでの小球Qの速さ vcは,UB, m,g, hから必要なものを用いて,vc=( ⑥ ) と表される。このとき点Cで小球Qにはたら 遠心力は,vs, m,g,hを用いて, F= ( ⑦ ) と表される。 点Cで小球Q が内壁から離れないため の条件は,F≧mg であるので,これを満たすvBの条件は,mg, hから必要なものを用いて, UB≧( ⑧ ) と表される。 以上の② ④, 8⑧の結果, 小球Q が内壁から離れないための条件は、質量Mと 3-(-3) hiel·lul 小球 Q m h

解決済み 回答数: 1
物理 高校生

(2)なぜ、これは強め合いの条件を使うんですか? 優しい方どなたか教えて欲しいです

る。 少の薄 RU 真 どのよ 943 ラス 目の可視 94 光 装置で、光源から波長の光を入射させて実験をし 299 ヤングの実験 右図のようなヤングの実験の 点を原点O, スクリーンと複スリットの距離をL た。 S, S, がら等距離の位置にあるスクリーン上の (1) 屈折率n, 厚さの物質Aをスリット S, の前に置いた。 このとき, 光は物質に対 してほぼ垂直に物質を横切るものとして, 単スリットと複スリットの間で生じる光路 = dはLに比べて十分小さいものとする。 差を求めよ。 (1)で、もともと原点Oにあった縞模様はどちらにいくら移動したか。 (3)物質Aを取り除き,スリット So を図の矢印の向き(下向き)にゆっくりと動かした。 物質を取り除いた後,干渉縞の明暗が初めて反転したときのS,S,-S,S2 はいくらか。 5番目と だけずれ | Step ただし、 94 3 解答編 p.163~166 (1) id, 0, を用いて表せ。 次に、図2のように波長がわずかに異なる。 波長の光を当てると, その1次の回折光を同じ 源 201 300 回折格子 格子定数d の回折格子に,波長入の単色 光を当ててスクリーンに向かわせると,図1のようにスク リーン上で明点が観察された。 図2のように、回折格子に 入射する光の進行方向と回折格子に立てた法線とのなす角 回折光と回折格子に立てた法線のなす角をβとする。 ここでは,α<βの場合を考え, 反射面に入射した光は, 反射面を中心とした素元波を発生させて、 様々な向きに広 がって進んでいくと考えてよいものとする。 (1) 経路 AD, BC をそれぞれ求めよ。 (2) 隣り合う回折光が強め合うときの条件式を書け。 図2 (3) 入射角α = α′で入射し、同じ角度で反射した光 (0次) に対して,最も近い明線の回折光 (1次) がβ=β' を満たすとき,角α'と'の間に成り 立つ式を求めよ。 の方向で観測するためには,回折格子をゆだ け傾ける必要があった。 (2) 経路の差P'A+ AQ' をd, p, 0, を用いて表 せ。 (3) - d, 0, を用いて表せ。 ただし, in cosp=1 と近似せよ。 である。 1 A 入射光 d S 回折格子 6801 回折格子図1は、格子定数dの回折格子に垂直に波長入の光を当て,入射光と の角をなす方向で干渉が起こることを説明した図である。このとき, 1次の回折光は 0 = 0, の方向で干渉を起こした。 PLA A 10 1 図1 図1 スクリーン 回折光 C D B 101 図2 (2) ASP'=, ∠ASQ'=0,-p 基礎 物理 23 その回折と干渉 185

解決済み 回答数: 1
物理 高校生

①丸で囲った所図からどのように導き出しているのですか? ②T=2π/ωってどこからきているのですか? 教えてください。

142 問題演習 円運動の頻出パターンの問題を解く! 1 図のように頂点Pが最下点に あり 母線が鉛直と0の角を なす円錐がある。 頂点Pから高さん の円錐のなめらかな内面を, 質量m の小球が高さを変えずに等速円運動 している。 この小球の角速度の大き さと円運動の周期を求めよ。 次に円運動の中心を0として, 小球 から点に向かって座標軸を引きま す。それに垂直に座標軸」を引きます。 小球に働く力は①重力mg,② 《タッチ》している円錐内面からの垂 直抗力です。 その大きさをNとしてお きます。 P 0 N sin 0 = mg 水平面内の円運動の問題です。 Theme 3 Step 1の円錐振り 橋元流で子と同じように解けばいいですね。 まず問題図からわかるよう に,この円運動の半径は, 与えられた記号を使ってん tan で 解く! Oj xC 図7-20 'm 0 N cost 図7-21 Nsin0 mg Nは座標軸に対してななめですから, 分解します。 すると, 軸方向の成分 は N cos 0, y 軸方向はNsin 0 となり ます。 P J-17-152KG X TAN COX 小球は鉛直方向には動きませんから,y 軸方向の力のつりあいの式を書 きましょう。 12

解決済み 回答数: 1