学年

教科

質問の種類

物理 高校生

・1枚目の写真の基本例題21(3)の解説で 式は0+1/2×50×x²とありますが(2)のB地点での位置エネルギーは0なのに、なぜ(3)ででてくる位置エネルギーはなぜ0じゃないんですか? ・2枚目の写真の基本例題22(2)の問題で解説には運動エネルギーと重力による位置エネル... 続きを読む

48 第1編■運動とエネルギー 基本例題 21 力学的エネルギーの保存 104~108 解説動画 ともになめらかな, 斜面 AB と水平面 BC がつな がっており、点Cにばね定数50N/m の長いばねが つけてある。 水平面 BC から 2.5mの高さの点Aに 質量 2.0kgの物体を置き, 静かにすべり落とした。 ただし、重力加速度の大きさを9.8m/s2 とし, 水平面 BC を高さの基準にとる。 (1) 点Aでの物体の力学的エネルギーは何Jか。 2.5m B C (2) 水平面 BC に達したときの物体の速さは何m/sか。 (3) 物体がばねに当たり, ばねを押し縮めていくとき, ばねの最大の縮みxは何mか。 指針 (2),(3) 重力や弾性力 (ともに保存力) による運動では, 力学的エネルギー (運動エネルギー Kと位置エネルギーUの和) は一定に保たれる。 すなわち K+ U =一定 解答 (1) KA+ UA=0+2.0×9.8×2.5 =49 J (3)(2)と同様に, K+U=KA+UA (2) 力学的エネルギー保存則により ばねが最も縮んだとき, 物体の速さは 0 であるから K = 0 KB+UB=KA+UA よって 0+1×50×x=49 1 よって -×2.0×2+0=49 2 v2=49 x²= = 49_7.02 ゆえに x=1.4m ゆえにv=7.0m/s 25 5.02

解決済み 回答数: 1
物理 高校生

このような問題の時、実線と破線どっちをみて計算すればいいんでしょうか❓

第7章 例題 32 波の要素 図は、x軸の正の向きに伝わる正弦波を示している。 実線は時刻 |t=0s, 破線は時刻 t = 1.5s の波形を示す。 ただし, この間にx=0m (1)この正弦波の波長入 [m], 振幅A [m], 周期 T [s], 波の速さ での媒質の変位y [m] は単調に0mから0.2mに変化している。 [m/s] を求めよ。 y[m] 197 解説動画 0.2 P Q R S 0 6 -0.2 (3)t=0s のとき, y 軸の正の向きの速度が最大の位置は0~Sのうちのどこか。 (2)t=0s のとき,振動の速度が0m/sの媒質の位置はOSのうちのどこか。 9 12 x[m] 指針(2),(3)媒質の振動の速さは,山や谷の位置で 0, 変位 y=0 の位置で最大となる。 速度の向きを知るには, 少し 後の波形をかいて, y 軸方向の媒質の変位の向きを調べてみる。 解答 (1) 図から入=12m, A = 0.2m 1.5秒間に波は 3.0m進むので == = 2.0m/s 距離 3.0. 時間 1.5 (moly 20 「p=fa」より振動数fはf= 1/2=2/20Hz 1=1/2=12 周期はT=- 1. = 6.0s 2.0 2) 媒質の振動の速度が0の位置は,谷の位置Pと山の 位置 Ro B) 変位 y=0 となっている位置 0, Q,Sで振動の速さ 0とS(下図)。 y は最大となるが, y軸の正の向きの速度をもつのは 少し後 -の波形 [POINT t=0 -- R S x 媒質の振動の速さ最大→変位が 0 の位置 媒質の振動の速さ 0 →山・谷の位置

解決済み 回答数: 1
物理 高校生

(2)について。 bc間の電圧を求めるのに、R3の抵抗を用いないのは何故ですか?

解説動画 基本例題28 抵抗の接続 (1) ac 間の合成抵抗はいくらか。 図のような電気回路について,次の各問に答えよ。 基本問題 232 233 234 R2 (2) bc 間の電圧はいくらか。 R2 の抵抗には 0.80Aの電流が流れている。このとき, 以下の各問に答えよ。 SS R₁ 6.0Ω a C R3 4.0Ω 12 (1) 第1章 電気 (3) ac 間の電圧はいくらか。 指針 2.012 (1) 並列に接続された R2, R3 の合 成抵抗を求め,その合成抵抗と直列に接続され た R との合成抵抗を求める。 (2) R2, R3は並列に接続されており,等しい電 圧が加わるので, R2 に加わる電圧を求める。 (3) ab 間, bc間のそれぞれに加わる電圧の和が, ac 間の電圧である。 (3) R3 を流れる電流を I3 とすると,オームの法 則から, V DC 13-R3 = 4.8 12 =0.40A は, R2, R3 を流れる電流の を流れる電流I 2に等しい。 L=0.80 +0.40=1.20A ac 間の電圧 Vac は, ab 間の電圧 Vab, bc 間の 電圧Vbc の和に等しい。 解説 (1) 並列に接続された R2, R3 の合==4.0×1.20=4.8V 成抵抗を R' とすると, Vac=ab+Vbc=4.8+4.8=9.6V 1 1 1 1 + 1 + R'=4.0Ω R=R+R'=4.0+4.0=8.0Ω (S) Point 電気回路の問題では, 直列接続, 並列接 続の特徴を把握することが重要である。 直列接続… 各抵抗を流れる電流は等しい。 R' R2 R3 6.0 12 ac 間の合成抵抗をR とすると, (2) 求める電圧を Vbc, R2 を流れる電流をI と すると, オームの法則 「V=RI」から, Vbc=RzIz=6.0×0.80=4.8V (各抵抗の電圧の和)=(全体の電圧) 並列接続…各抵抗に加わる電圧は等しい。 (各抵抗の電流の和)=(全体の電流)

解決済み 回答数: 1