学年

教科

質問の種類

物理 高校生

核融合反応について、(2)でHの原子量が1であるからHの原子核数はアボガドロ数6.0×10^23個であるという説明がわからないです。噛み砕いて説明してくださるとありがたいです。

図ここがポイント 1000J (1000J/s 1000W) のエネルギーを1時間使ったときのエネルギーのことである。 量は1であるから, アボガドロ数個のHの質量が1gである。 電力使用量 (kWh) とは、毎秒 核融合においても, 反応で失われた質量 4m によるエネルギーE=Amc² が解放される。 Hの原子 347 (1) この反応で失われる質量 4m 〔kg〕は =4.388×10-29kg ⊿m=(1.6726×10-27) ×4-{(6.6447×10-²7) + (9.1×10^31)×2} よって E=mc² = (4.38×10-29) × ( 3.0×10) 20 = 3.942×10-12 ≒3.9×10-12 J (2) H の原子量は1であるから, 1g の H の原子核数はアボガドロ数 るので 6.0×1023個 である。 H 原子核4個によって(1) のエネルギーが解放され N 4 W=EX- ×- = (3.94×10-12) X- =5.91×10"≒5.9×10" J (3)1kWh=1000W x 1h = 1000J/sx3600s=3.6×10° J 6.0×1023 4 であるから, 平均的な家庭が1年間に消費するエネルギーは 300 (kWh)x (3.6×10×12(か月分) = 1.296×10'J よって, 求める年数は (2) の答えを用いて 5.91 x 1011 1.29×1010 ≒46年 である。 1 有効数字は2桁であるが, 途中式や前の答えを引用する ときは1桁多くとる。

未解決 回答数: 0
物理 高校生

0.29g減少するのにそのうち6×10-3gしかα粒子が出ない計算になっているのですが、残りのgは何に変わってしまうのですか?

Cu 者 進入 の する 検 ここがポイント 342 α 崩壊では He の原子核 (a 粒子) を放出する。 崩壊によってポロニウム原子核の数は減少し,残っ 「」に従う。ポロニウムが1個崩壊するたびにœ粒子を1個放出 た原子核の数は崩壊の式「N No (1) ² するので,放出したæ粒子の数は崩壊したポロニウムの数と等しい。原子核の質量は近似的に質量数 に比例する。 崩壊の式の の値が整数ではないときは,両辺の対数をとるとよい。 T 解答 (1)α 崩壊は,原子核が He 原子核を放出するので, 原子番号Zは2,質 量数Aは -4 だけ変化する。 よって 質量数 A=210-4=206 原子番号 Z=84-282" (2) 崩壊の式「N=(1/2) 17」において、原子核の数は質量に比例する。 初めの質量 Mo (= 1.0g), t日後の質量を M〔g〕 とすると 6=(1/2) ² = M₁ ( 12 ) + ² N M No Mo ① t = 69 日 のとき M = 1.0× M=Mol 69 138 1x (12/1)-(2/2) - // 4 m 210 0.29 276 138 √2 2 2 t=276日のとき M = 1.0× 0x (-1/2) =(1/2)=14=0.25g .≒ 0.71g 69日間に崩壊した 288Po 原子核の質量は 1.0-0.71=0.29g 28 Po 原子核と α 粒子 (He 原子核) の質量比は原子核の質量数の比 210:4としてよく崩壊した 288Po 原子核数は放出したα粒子数と等 しいので, 求める質量をm〔g〕 とすると よってm=0.29× -≒6×10-3g 4 210 原子番号 82は鉛Pbなの で,このα崩壊は 2PO206Pb+¹He という反応式で表される。 2 厳密には陽子と中性子の 質量に微妙な差があるが, 本 問ではこの差を無視している ので,質量比=核子数の比= 質量数の比としてよい。

回答募集中 回答数: 0
物理 高校生

(6)の高温熱源、低温熱源がどうのこうの というのがわかりません。

容器内の気体の圧力 P, 〔Pa] を求めよ。 3) 容器内の気体の温度 T [K] を求めよ。 この変化における容器内の気体の圧力P [Pa〕 と体積V[m²] の関係を表すグラフをかけ。 ただし, P を用いてい 15) この変化で気体が外部にした仕事〔J〕 を求めよ。 (6) この変化で気体が温度調節器から受け取った熱量Q〔J〕を求め 68.〈気体の状態変化と熱効率〉 (6) [A] 理想気体では物質量が同じであれば, 内部エネルギーは温度 で決まる量であり, 圧力や体積が異なっていても温度の等しい状 態の内部エネルギーは同一である。 このことから, 1molの理想 気体に対するか-V図(図1)に示す状態a (温度 T [K]) から状態 b (温度 T'[K]) への内部エネルギーの変化 4Uab 〔J〕 は,定積モ ル比熱Cv 〔J/(mol・K)] を用いて AUab=Cv(T-T) [9] 気体分子の運動と状態変化 51 68 p 0 数研出版 と表すことができる。 (1) 図1に示す状態 a, b とは別の状態 c (状態aと同じ体積をもち,状態bと同じ温度で ある状態)を考えることで ① 式を導け。 1/3 [B] 理想気体1mol の状態を図2のようにA→B→C→Aと変化 させる。 それぞれの状態変化の過程では, A B 外部との間で熱の出入りがないものとする B→C: 圧力を一定に保つ C→A:体積を一定に保つ ように変化させる。 状態 A, B, Cの圧力, 体積, 温度をそれぞれ (p₁ (Pa), V₁ (m³), TA (K)), (P2 (Pa), V₂ [m³), TB (K)), 〔Pa], V1 [m²], Tc 〔K〕) とする。 また, 定積モル比熱をCv 〔J/(mol・K)] 定圧モル比熱 Cp を Cp [J/(mol・K)],比熱比を y = v 気体定数を R [J/ (mol・K)] で表す。 p P₁ P₂ 図 1 0 C 等温線 V₁ 図2 B (2) 過程A→Bで気体が外部からされる仕事 WAB 〔J〕 を ① 式を用いて求め, その答えを Cv. Cp, Ta, TB, Tc の中から適するものを用いて表せ。 (3) 過程B→Cで気体が得る熱量 QBc 〔J〕 と, 過程C→Aで気体が得る熱量 Qca 〔J〕 を Cv, Cp, Ta, TB, Tc の中から適するものを用いて表せ。 V₂ V (4) 過程B→C→Aで,気体が外部からされる仕事 WBCA 〔J〕 を求めよ。 これと前問の答え とをあわせて考えると, 定積モル比熱 Cv, 定圧モル比熱 C, 気体定数Rとの間の関係 式を見出すことができる。 その関係式を導出せよ。 仕事 WBCA は、 Cv, R, Ta, Ts, Te の中から適するものを用いて表せ。 (5) 図2に示すサイクルの熱効率e を, y, pi Y2 を用いて表せ。 Pa' Vi (6) 図2のサイクルを逆向きに,すなわちA→C→B→Aの順に変化させると、 どのような はたらきをする機関となるか。 これが熱力学第二法則に反しないための条件を含めて、 100字以内で述べよ。 [22 岐阜大]

回答募集中 回答数: 0
物理 高校生

(1)のマーカー部についてです。 ドップラー効果の式についてです。 音源が近づく場合はV -v0となると思ったんですけど、なぜこのような式になるのですか?

発展例題32 反射板とドップラー効果 物理 図のように、観測者Oと振動数fo [Hz] の音源Sは静止し ており,反射板Rが左向きに速さvo 〔m/s]で運動する。いず れも同一直線上にあり,音速をV[m/s] とする。 次の各問に 答えよ。 10 (1) 観測者Oが聞く反射音の振動数は何Hz か。 MOL 指針 (1) 反射板Rは, 音源Sから出さ れた音を観測者として受け,それを反射すると き, 音源としての役割を果たす。 それぞれドッ プラー効果の式を用いて計算する。 (2) 1波長分の波を1個と数えると,音源Sが 発した波の数と観測者Oが聞く波の数は等しい。 解説 (1) 反射板R が受ける音の振動数 V+vo ._._._._.___.___________________ (2) 音源Sが音を to [s] 間発したとき,観測者Oは反射音を何s間聞くか。 You 6 LATKER 70 t=f₂ fi(Hz)l£, f₁= -f[Hz]小さくしてみた 反射板Rは振動数f] [Hz] の音源とみなせ, 観 fzt=foto 0 WHASON U S foto V-Vo V + vo = 発展問題 389 -to 測者が聞く反射音の振動数 〔Hz] は, V V + vo f₂=- -f₁= V-Vo V-vo 日 fo(Hz) 888 (2) 観測者Oは1s間にた個の波を受け、求め る時間をとすると,その間に受ける波の数 foto は等しい。 だと,音源Sが発する波の数 Vo SX4 ( ( 東亜大改) R V-voto(s) V + vo

未解決 回答数: 1
物理 高校生

右ネジをどのようにこれ使ってるんですか?磁力の向きないから分からないですよね。

電車の回生ブレーキは、 減速するときにモーターを発電機として 388 動くコイルに発生する誘導起電力 右図のように。 長い直 線状の導線にI[A]の電流が流れている。 1辺の長さが[m]の正 方形コイルを導線と同じ平面内に置き、矢印の向きにv[m/s]の 速さで動かす。 コイルの辺PSが導線 A から [m]の位置を通過 する瞬間,コイルに流れる電流を求めよ。ただし,コイルの抵抗 R〕 真空の透磁率を仰4 [N/A2] とし, コイルの自己インダ センサー 130 133~ クタンスは無視する。 389] 誘導起電力 右図のように, 鉛直上向きに磁束密度 B[T] の磁界がある。 長さ [m] の金属棒 OP が 点Oを中心 として水平面内を角速度ω 〔rad/s]で回転している。 OP の誘 導起電力の大きさはいくらか。 また, 点0と点Pのどちらの 電位が高いか。 センサー 134 M IN PAD b A S! kr→ JAB 解 390 モーターの原理 右図で, コの字型の回路が水 平面内に置かれていて、 磁束密度B[T]の一様な磁界 が鉛直上向きにかかっている。 Eは起電力 E〔V〕 の電 池 M 質量 [kg]のおもりである。 摩擦はないも のとし 回路を流れる電流のつくる磁界は無視できる ものとする。 コの字型の導線の間隔を[m], 重力加 速度の大きさを g〔m/s ] とする。 導体ab には R[Ω]かり!! 〕 の電気抵抗があるものとし、質量は無視する。 AB a 凸 TES E (1) スイッチ Sを入れたところ,Mは上向きに静かに動き出した。 スイッチを入れた 直後の,回路を流れる電流 I [A] とおもりの加速度α〔m/s'] を求めよ。 (2) おもりの速さが一定になったとき, 回路を流れる電流 電池の消費電力 おもりの 速さ,1sあたりに導体 ab で発生する熱量とおもりを持ち上げる仕事率を求めよ。 132

回答募集中 回答数: 0