学年

教科

質問の種類

物理 高校生

黄色のマーカー引いてる所がわかりません。 (1)のy成分はなぜ−g cosθになるのでしょうか。 なぜ−がつくのかがわかりません。

口 発展例題5 斜面への斜方投射 [物理 図のように,傾斜角 0の斜面上の点Oから, 斜面と垂直な 向きに小球を初速v で投げ出したところ, 小球は斜面上の 点Pに落下した。 重力加速度の大きさをgとして,次の各問 答え 指針 重力加速度を斜面に平行な方向と垂 直な方向に分解する。 このとき, 各方向における 小球の運動は,重力加速度の成分を加速度とする 等加速度直線運動となる。 ■解説 (1) 斜面に平行な方向 にx軸、垂直な方向に y軸をとる (図)。 重力 加速度のx成分,y成 分は,それぞれ次のよ うに表される。 O (1) 小球を投げ出してから, 斜面から最もはなれるまでの時間を求めよ。 (2) OP 間の距離を求めよ。 y -gcosoi 2 gsin g P x 成分 : gsin0 y成分: -gcose 方向の運動に着目する。 小球が斜面から最も はなれるとき, y方向の速度成分vy が 0 となる。 求める時間を とすると, 「vy=v-gcoset] の式から, 0=v-gcose・t t₁ = Vo gcoso (2) Pはy=0 の点であり, 落下するまでの時間 をもとして, 「y=vot-- - 1/27g cost ・f2」の式から, 0=vol2-1212gcos0.12 0=1₂(vo-cost-t₂) t> 0 から, t₂ = 200 gcoso 発展問題 48,52 Vo O x 方向の運動に着目すると, x=-12gsinet か ら, OP間の距離xは, x= =1/29s gsino.t=1212gsine. 2v" tan0 gcoso P 200 gcoso Point 方向の等加速度直線運動は, 折り返 し地点の前後で対称である。 y=0 から方向 の最高点に達するまでの時間と, 最高点から再 びy=0 に達するまでの時間は等しく, t=2t, としてを求めることもできる。

解決済み 回答数: 1
物理 高校生

(1)の-½—gt ²ってなんですか? 最高点から自由落下した高さ?ってことですか?わかりません

:自由落下 図のように、 水平右向きに x軸, 鉛直上向きにy軸を とる。 座標 (10) に点Aがあり, (1, h) に点Bがある。 小球Pを原点Oから、x軸の正の向きより角0 上方に 速さ で発射すると同時に, 小球Qを点Bから自由落 下させた。 重力加速度の大きさをgとする。 解答 vo Coso・t=l よって,t=- (1) P が x=lに到達するまでにかかる時間tは, 1 Vo COSA (1) P x=l に到達したときのy座標を求めよ。 OVER P (2)PがQに命中するためには, 0, l,hの間にどのような関係が成り立てばよい か。 (3) Q が点Aに到達するまでに、PがQに命中するためのひの条件を,L,h, g を用いて表せ。 このときのPのy座標yp は, 1 yp=vosin0・t- 2 考え方 (2) Px=1に到達したときに,(Pのy座標)=(Qのy座標)になればよい。 (3) PQに命中する位置のy座標が正であればよい。 yo=h-- −gt²=v₁sine.. g1² 2vo cos²0 y=h-- =ltan0- (2)Pがx=l に到達したときのQのy座標 yo は, 2 - 1/²gt² = h - 1279 (v₂cose)² = h =h- yp=ya であれば、PがQに命中するので Itan 0- gl² 200²cos²0 -=h- h (3) tano=7のとき、 右の図より, OB=√2+ h2, cos0=- gl² √1²+h²\² 200² 1 =h-9(1²+h²) 2002 gl² 2vo cos²0 1 √1²+h² >0であればよいので, h-g(1²+h²) > ->0 2002 00より> 1 VO COSO (COSO) Vo cose g(1²+h²) 2h h>g(l² +h²) 200² - だから, 1 29 y gl² 2vo²cos²0 よって, tano= h √²+h² Un vo²>9 (1²+h²) 2h 117 OB 補足 (2)0) (tan0=¹) ら,PをQに命中させる には,PをQに向け 発射すればよいとわか QoB Vo P 0010 k か この理由をPの 「重力を無視した! 変位」と「自由落 位」 にわけて考え 力を無視した場 位」は、初速度 直線運動の変 自由落下 とQで同じな Q に命中させ 力を無視した がP(点)が の向きであれ 重力を無視 した場合の 変位 Vo

解決済み 回答数: 1
物理 高校生

物理のエッセンス熱の問8について、mNaが1モルの分子の質量になるのがなぜなのか分かりません。単位的にもそうなるとは思えなかったのですが、分かった方は教えて下さると有難いですm(_ _)m

かはないはず) ひx2 = by²2=022 よって 72=30x2 ③,④より F=- Nmv² 3L よって P-E-Nmv²_Nmv² 3L3 P= L2 3 V この結果を状態方程式 PV = nRT= -RT と比べてみれば (PV=) Nmv²_N_RT =hty mv²-3. R.T A NA 2 NA 3 定数は平均に関係しないから、 ギーの平均値を表していることになる。 F N NA 気体の内部エネルギー 1/2mv1.2mに等しく,分子の運動エネル M ③ 分子の平均運動エネルギー 1/2mv=12/2 NT=12/2kT 3 R -mv². NA ちょっと一言 この式は重要。 温度は化学では熱い冷たいの目安に過ぎなかった のが、分子の運動エネルギーで決まっていることがこうして分かった んだ。また,分子が運動をやめる T = 0 が最も低い温度となることも 示唆されている。定数R/NA はんと書いてボルツマン定数とよんでい る。 2乗平均速度√vは分子の平均の速さにほとんど等しい。27℃の酸素の √v^² を求めよ。酸素の分子量を 32,気体定数を8J/mol・K とする。 RO-31XY NAJS WEDR 内部エネルギーU とは分子の運動エネルギーの総和をいう。 そこで単原子分子からなる気体(以下,単原子気体とよぶ) では 3 RT=3 NRT="nRT 気体とよぶ)では U=Nx/1/2mv=N×012 NA 2 29 何原子分子であれ気体の内部エネルギーは絶対温度 Tに比例すること わかっている。 内部エネルギーは温度で決まる小

解決済み 回答数: 1
物理 高校生

(2)なぜ、これは強め合いの条件を使うんですか? 優しい方どなたか教えて欲しいです

る。 少の薄 RU 真 どのよ 943 ラス 目の可視 94 光 装置で、光源から波長の光を入射させて実験をし 299 ヤングの実験 右図のようなヤングの実験の 点を原点O, スクリーンと複スリットの距離をL た。 S, S, がら等距離の位置にあるスクリーン上の (1) 屈折率n, 厚さの物質Aをスリット S, の前に置いた。 このとき, 光は物質に対 してほぼ垂直に物質を横切るものとして, 単スリットと複スリットの間で生じる光路 = dはLに比べて十分小さいものとする。 差を求めよ。 (1)で、もともと原点Oにあった縞模様はどちらにいくら移動したか。 (3)物質Aを取り除き,スリット So を図の矢印の向き(下向き)にゆっくりと動かした。 物質を取り除いた後,干渉縞の明暗が初めて反転したときのS,S,-S,S2 はいくらか。 5番目と だけずれ | Step ただし、 94 3 解答編 p.163~166 (1) id, 0, を用いて表せ。 次に、図2のように波長がわずかに異なる。 波長の光を当てると, その1次の回折光を同じ 源 201 300 回折格子 格子定数d の回折格子に,波長入の単色 光を当ててスクリーンに向かわせると,図1のようにスク リーン上で明点が観察された。 図2のように、回折格子に 入射する光の進行方向と回折格子に立てた法線とのなす角 回折光と回折格子に立てた法線のなす角をβとする。 ここでは,α<βの場合を考え, 反射面に入射した光は, 反射面を中心とした素元波を発生させて、 様々な向きに広 がって進んでいくと考えてよいものとする。 (1) 経路 AD, BC をそれぞれ求めよ。 (2) 隣り合う回折光が強め合うときの条件式を書け。 図2 (3) 入射角α = α′で入射し、同じ角度で反射した光 (0次) に対して,最も近い明線の回折光 (1次) がβ=β' を満たすとき,角α'と'の間に成り 立つ式を求めよ。 の方向で観測するためには,回折格子をゆだ け傾ける必要があった。 (2) 経路の差P'A+ AQ' をd, p, 0, を用いて表 せ。 (3) - d, 0, を用いて表せ。 ただし, in cosp=1 と近似せよ。 である。 1 A 入射光 d S 回折格子 6801 回折格子図1は、格子定数dの回折格子に垂直に波長入の光を当て,入射光と の角をなす方向で干渉が起こることを説明した図である。このとき, 1次の回折光は 0 = 0, の方向で干渉を起こした。 PLA A 10 1 図1 図1 スクリーン 回折光 C D B 101 図2 (2) ASP'=, ∠ASQ'=0,-p 基礎 物理 23 その回折と干渉 185

解決済み 回答数: 1