学年

教科

質問の種類

物理 高校生

この問題の(き、く)の部分の解決で、何故x軸方向にE/Bで移動する観測者と分かるのですか? どなたか教えて頂けると助かります

VI. 次の文を読み、下記の設問1・2に答えよ。 解答は解答用紙の所定欄にしるせ 14 2022 年度 物理 電場や磁場の影響を受け, y 図1のように,y 軸方向正の向きに強さE の一様な電場がかかっているとする。 電気量 g (g > 0)の荷電粒子が時刻t = 0 に原点 0 から初速度 0(0) で運動を開始した。 時刻でのこの粒子の位置は (x,y)=(あ, である。 である。 ・図2のように、xy平面に垂直に、紙面の裏から表に向かって, 磁束密度B の一様な 場がかかっているとする。 質量 m, 電気量 g (g > 0) の荷電粒子が時刻 t = 0 に隠さ 0から初速度v = (u,0)(v>0) で運動を開始した。 この粒子が運動開始後に 初に y 軸を通過するときの時刻はt= E V y 平面上を運動する荷電粒子を考える。 0 STUSKO 図3のように, y 軸方向正の向きに強さE の一様な電場と, xy平面に垂直に紙面の から表に向かって、 磁束密度B の一様な磁場の両方がかかっているとする。 質量m, t 気量g(g> 0)の荷電粒子が時刻t = 0 に原点Oから初速度 (0,0)で運動 開始した。この粒子の x 軸方向,y 軸方向の速度をそれぞれ ux, vy, 加速度をそれぞ = Q1 Q とすると,運動方程式は 図1 X (x,y)=(0, B [O うで,そのときの座標は え) V い y 図2 B 立教大 0 図3 とな で運 で道 道を Vo 1. 2.

回答募集中 回答数: 0
物理 高校生

(6)の高温熱源、低温熱源がどうのこうの というのがわかりません。

容器内の気体の圧力 P, 〔Pa] を求めよ。 3) 容器内の気体の温度 T [K] を求めよ。 この変化における容器内の気体の圧力P [Pa〕 と体積V[m²] の関係を表すグラフをかけ。 ただし, P を用いてい 15) この変化で気体が外部にした仕事〔J〕 を求めよ。 (6) この変化で気体が温度調節器から受け取った熱量Q〔J〕を求め 68.〈気体の状態変化と熱効率〉 (6) [A] 理想気体では物質量が同じであれば, 内部エネルギーは温度 で決まる量であり, 圧力や体積が異なっていても温度の等しい状 態の内部エネルギーは同一である。 このことから, 1molの理想 気体に対するか-V図(図1)に示す状態a (温度 T [K]) から状態 b (温度 T'[K]) への内部エネルギーの変化 4Uab 〔J〕 は,定積モ ル比熱Cv 〔J/(mol・K)] を用いて AUab=Cv(T-T) [9] 気体分子の運動と状態変化 51 68 p 0 数研出版 と表すことができる。 (1) 図1に示す状態 a, b とは別の状態 c (状態aと同じ体積をもち,状態bと同じ温度で ある状態)を考えることで ① 式を導け。 1/3 [B] 理想気体1mol の状態を図2のようにA→B→C→Aと変化 させる。 それぞれの状態変化の過程では, A B 外部との間で熱の出入りがないものとする B→C: 圧力を一定に保つ C→A:体積を一定に保つ ように変化させる。 状態 A, B, Cの圧力, 体積, 温度をそれぞれ (p₁ (Pa), V₁ (m³), TA (K)), (P2 (Pa), V₂ [m³), TB (K)), 〔Pa], V1 [m²], Tc 〔K〕) とする。 また, 定積モル比熱をCv 〔J/(mol・K)] 定圧モル比熱 Cp を Cp [J/(mol・K)],比熱比を y = v 気体定数を R [J/ (mol・K)] で表す。 p P₁ P₂ 図 1 0 C 等温線 V₁ 図2 B (2) 過程A→Bで気体が外部からされる仕事 WAB 〔J〕 を ① 式を用いて求め, その答えを Cv. Cp, Ta, TB, Tc の中から適するものを用いて表せ。 (3) 過程B→Cで気体が得る熱量 QBc 〔J〕 と, 過程C→Aで気体が得る熱量 Qca 〔J〕 を Cv, Cp, Ta, TB, Tc の中から適するものを用いて表せ。 V₂ V (4) 過程B→C→Aで,気体が外部からされる仕事 WBCA 〔J〕 を求めよ。 これと前問の答え とをあわせて考えると, 定積モル比熱 Cv, 定圧モル比熱 C, 気体定数Rとの間の関係 式を見出すことができる。 その関係式を導出せよ。 仕事 WBCA は、 Cv, R, Ta, Ts, Te の中から適するものを用いて表せ。 (5) 図2に示すサイクルの熱効率e を, y, pi Y2 を用いて表せ。 Pa' Vi (6) 図2のサイクルを逆向きに,すなわちA→C→B→Aの順に変化させると、 どのような はたらきをする機関となるか。 これが熱力学第二法則に反しないための条件を含めて、 100字以内で述べよ。 [22 岐阜大]

回答募集中 回答数: 0
物理 高校生

3番の電場を半分に考えるのが分かりません。 aとbの電場と書かれてるけど、bから線は出てないのにどういうことですか?

CEP 105 くばね付きコンデンサー > (6) 極板の電荷が変わらないから, 極板から出る電気力線の本数は変わらない。 しかし、 誘電体内は誘電分極により電場 (3) 極板間の電場の半分 (片方の極板がつくる電場) によって他方の極板が力を受ける。 は弱まる。 (7) 誘電体を入れても、極板B近くの電場は変化しない。 よって,電気的な力も変化しない。 (1) A + Q, B に - Q を帯電させたから, AB間にはA からBに向けて一様な電場ができ, 電気力線は等間隔に 引ける (図)。 (2) Aから出る電気力線の本数Nは,ガウスの法則より 1 *A- N=-Q E0 よって,電場の強さEは,「EN」よりE= 28 S (5) 電位差と電場の式 「V=Ed」より v=2(d-4d) = (d. Q S A +Q Q² 2kS S QB- S (3) (2)で求めた AB間の電場は,極板AとBによる電場である。極板Aの電荷 による電場EAはE^=1212E である。極板Bの電荷Qが受ける力は, (6) 極板AとBの電荷は変わらないから, ガウスの法則よ り極板から誘電体までの電場は変化しない。 しかし、 比誘電率2の誘電体を差しこむから, 誘電体内の電場は 倍になる。よって,電気力線は図cのようにな 「F=qE」より F=Q12E=102 2S (4) 極板B に水平方向にはたらく電気的な力Fと、弾性力kadとがつりあう(図b)。 Q2 F=kad よって -=k4d ゆえに d= 2ks S d-4d 図 a A++++ B A +Q TOTELI+ + + + TATAL 5 -- + B +++++! ◆A クーロンの法則の比 例定数をko とすると N=4koQ C 1 である。 また Eo= 4ko ←B 別解 コンデンサーの 電気容量をCとすると S C=Eod-Ad Q=CV=Eod-Ad 図 c る。 (7) 極板B近くの電場は (3) の場合と変わらないから、電気的な力は変化しない。 よって V E=d-Ad F \k4d mmmmm 図 b S EOS V C 比誘電率 er の誘電 体内の電場の強さは、外の電 場の4倍となる。 Er

解決済み 回答数: 1
物理 高校生

なぜこの熱力学第1法則のwが−になるのでしょうか?仕事されてませんし、圧縮とかもされてないですけど,なぜですか?

る体積V〔m゜」を超えると減少していく。 V1 を求めよ。 22 気体の変化 次の問いに答えよ。 (1) 体に加えられる熱量を②気体にする仕事を気体 の内部エネルギーの変化をAUXして,これらの間に成り 立つ関係式を答えよ。 また、この関係式が表す法則の名前 を答えよ。 LE 次に, ピストンのついたシリンダーに閉じ込めた気体を加 熱する場合を考える。 気体の体積を一定にして加熱する場合 を(a), 圧力を一定にして加熱する場合を(b) とする。 気体 ピストンは固定 熱する (a) ピストンは動く (2)(a) の場合,気体にする仕事 wa は正か0か負か。また, 加えられる熱量 Q2, 内部エネルギーの変化4U の間に成◎ ◎ ◎熱する り立つ式を答えよ。 (b) (3) (b) の場合,気体にする仕事 wb は正か0か負か。 また, 仕事 wb, 加えられる熱量 Qb, 内部エネルギーの変化AU の間に成り立つ式を答えよ。 (4) (a)と(b)の場合で, 同じだけ温度を上昇させる場合を考える。気体の内部エネルギー を温度だけの関数とすると, AUと4Uとの大小関係はどうなるか。 また, Qa と Qb との大小関係はどうなるか。 さらに, (a) の場合の比熱 c と (b)の場合の比熱 c との大 小関係はどうなるか。 ただし, (a) と (b)の場合で気体の質量は等しいとする。 ント 218 (1) V=nRT (1)2) ピストンにはたらく力のつり合いを利用する。 (3) Vグラフの面積を利用する。 (5) 熱力学第1法則 219 センサー 55 (2) 直線の方程式を求める。 pV=nRT (3) 熱力学第1法則を用いる。 14 気体の状態変化

解決済み 回答数: 1