学年

教科

質問の種類

物理 高校生

解答を教えて欲しいです お願いします🙇‍♀️

(I) 図のように,n モルの単原子分子理想気 体を体積Vo, 温度T の状態Aから, A→B→C→D→A と状態を変化させた。 状 態AとBは体積が V で, 状態CとDは 体積が2V である。 また, この図におい て,状態Dを表す点および状態Cを表す To 点はそれぞれ直線 OA および直線 OB の延 温度 40fc 2nRTo nRT 2 B 2To HD inRTo PRTO A CAT 長線上にある。 気体定数をRとして, 以番 V。 0 下の文中の 2 Vo 体積 の番号を解答欄に記入せよ。 内に入れるのに適当なものを解答群の中から1つ選び,そ 用いると, Tc= B→Cの状態変化は,温度と体積が比例関係にあることから,(6) 4本であ る。 状態Cの体積は2V であるから, 状態Cにおける気体の温度Tc は, To を 状態Aにおける気体の圧力PAは,PA= (1)13 である。 また, 状態Bに おける気体の温度は2T であるから,その圧力は DA の (2)35 倍であること がわかる。 また, A→Bの状態変化において,気体が外部にした仕事は (3)29 内部エネルギーの増加量は (4)1 気体が吸収した熱量は (5)である。 Vo (AHO) NX (?) pv = n (7)28 である。 B→Cの状態変化において気体が外部にした 仕事は (8)18であり、吸収した熱量は (9)24 である。 DAの状態変化は (6)であり、 状態Dにおける気体の温度TD は, TD= (10)である。 3nRT=Q-2nRT A→B→C→D→Aのサイクルを熱機関とみなし, 1サイクルで気体が吸収した 高 熱量と外部にした正味の仕事の比 (熱効率) を求めると, (11)32 であることが わかる。また,このサイクルの圧力と体積の関係を表すグラフは (12) のよ ZARTO. No = 2nRTo うになる。 Pop Vo V₂ 2PVo=nRto 43 7×2 82 B Te

回答募集中 回答数: 0
物理 高校生

(1)では遠心力を考慮していないですが、遠心力を考慮する時は[遠心力を考慮し]と記載されますか? また、⑵のつり合いの式の両辺にmがついてますが打ち消さなくていいんですか?

<問8-4 角速度で回転する円板に、支柱を取りつける。 質量mのおもりに糸をつけ 柱の頂点に結びつけたところ, 支柱と糸は角度をなして静止した。おもりと回転 の中心の距離をとし、以下の問いに答えよ。 ただし重力加速度の大きさを とする。 (1) 糸の張力の大きさを,m,g,eを使って表せ。 (2) 遠心力を考慮し, 物体にはたらく水平方向の力のつり合いの式を立てよ。 (3) おもりの円運動の運動方程式を立てよ。 さて,遠心力の考えかたを身につけるべく問題を解いていきましょう。 (2),(3)が大事な問題ですから,しっかり理解してくださいね。 <解きかた (1) mg.8で表すので,鉛直方向に注目しましょう。 糸の張力の大きさをSとおくとおもりにはたらく鉛直方向の力のつり 合いより Scos0=mg S= mg cose (2) 「遠心力を考慮し」とあるので、 おもりに観測者を乗せて考えます。 観測者は円運動することになるので, 回転の中心に向かって加速度 a=rw2で運動しているということです。 観測者からすると, おもりには慣性力ma=mrw²が回転の外向きにはた らいて見えます。 また、おもりには糸の張力がはたらくので、力のつり合いより Ssin0=mrw2 (1)の結果より Ssin0=mg sin0 Emgtane cose よってmgtand=mrw答 (3) おもりにはたらく向心力はSsin0で、角速度 w半径1の円運動をするので Ssin0=mr2 mgtan0= mrw2 ・・・答 (2)と(3)を比べると同じ式になりましたね。 遠心力は円運動の慣性力です。 しっくりこない人はChapter7 を復習して、理解を深めておきましょう。 問8-4 円板が m 回るんだね 8 08 W → (1)鉛直方向の力のつり合いを考えて Scoso=mg S= mg COS Omr Ssin 0 20 mrw おもりの上に観測者を乗せて 考えると,F=mrw の遠心力 を上図のように受けるので 力のつり合いより Ssin0=mrw2 W mg cos0 mgtan 6=mrw どちらも結果の式は 同じだが,考えかたが 違うんじゃ (3) 0 Scos 0 Img S sin a=rw² おもりは回転の中心に向心力 Ssin を受ける。 円運動の 運動方程式より Ssin=mrw² wwww ww ma F mg tan 0=mrw² (合 ここまでやったら 別冊 P. 40~

回答募集中 回答数: 0
物理 高校生

なぜ答えは③になるのでしょうか

図1に示すように、磁束密度の大きさが B 〔T] でy軸の正の向きを向いた一様 な磁場 (磁界) 中で, 細い導線でできた長方形の一巻きコイル ABCD が回転する。 辺AB と辺 CD の長さはα 〔m〕 であり,辺BCと辺DAの長さは6〔m〕 である。 辺 AB, BC, CD の電気抵抗は無視できるが, 辺 DAの電気抵抗は R [Q] である。 点Aは座標原点にある。 コイルは軸にある辺AD を軸にして,軸の正の側か ら見て反時計回りに一定の角速度w 〔rad/s] で回転している。 一巻きコイルの自 己インダクタンスは無視できる。 必要であれば以下の公式を用いてもよい。 sin (a ±3 = sin a cos β ± cosa sin 3 cos(a±β)= cos a cos β 干 sin a sin β Z (複号同順) 図1のように, 軸の正の向きと辺ABのなす角が0 〔rad〕 のとき, 辺BCの速度 ア である。 辺BCの中にある電荷-e [C] (ただ の成分 [m/s] はv= 0-0のとき、 le > 0) を持つ自由電子の速度のæ成分もと同じとすれば, 0<0く 電子は イ のローレンツ力を受ける。 これによって, 閉じている一巻きコ イル ABCD には誘導電流が流れる。 2 これを,コイルを貫く磁束が時間的に変化するという見方で見てみよう。 コイル の面と常に垂直でコイルとともに回転する矢印Nを図1のようにとる。 コイルの面 を矢印Nの向きに磁束線が貫く場合, コイルを貫く磁束は正, 逆向きに貫く場合 πT を負とする。 0 の範囲がー <0 の場合,磁束線はコイルを矢印Nの向きに買 2 2 いており, コイルを貫く磁束 (0) 〔Wb] は ウである。ファラデーの電磁誘

回答募集中 回答数: 0
物理 高校生

Rは球体と四角の物体の間で生じる垂直抗力です。 (3)の解答の所で①から②を引いてaを消してるのは 同じ加速度じゃなくなったらRが消えるのでRが存在するギリギリのところで考えるためですよね?この考え方で合ってるか教えてください。

2μ'g (M+m) 178. ばねに乗った物体 解答 (1) 2mgsino k D 左 VIA, N 台C (2) Ama=k(L-x) -R-mgsin0 B:ma=R-mgsin0 (3) UR (2)(3)AとBがおよぼしあう垂直抗力は、作用・反作用の関係にあり R=0 となったとき, BはAからはなれる。 指針 (1) AとBを一体と考えて、力のつりあいの式を立てる。 解説 (1) ばねの縮みをdとする。A,Bを一体とみなすと,運動方 向に受ける力は図1のように示され, 力のつりあいの式は、 kd-2mgsin0=0 d= 2mgsin ST るん 受ける力 (2) Aが位置xにあるとき, ばねの縮みはlo-x, Aがばねから受ける弾性力はk(l-x) となる。 AR Bが受ける運動方向の力は,それぞれ図2のよう に示される。これから,運動方程式を立てると A:ma=k(l-x)-R-mgsin 0 B:ma=R-mgsino mgsino_ 2mg sin 0 asing 0 0002mg 大日 ak(lo-x) ・・・① 0 mg O ...2 【Aに着目】 (3) BがAからはなれるのは, R=0 となる位置である。 式①一式 ②か ら αを消去してRについて整理すると, 0=k(Z-x)-2R R= k(lo-x) 2 この式から,x=1のとき, R=0 となることがわかる。 したがって, BがAからはなれるのは, ばねが自然の長さのときである。 kd mgsin a. R x mg 0 【Bに着目】 ばねが自然の長 も短いとき,Aは 向きの弾性力を受 自然の長さよりも き, 下向きの弾性 ける。

回答募集中 回答数: 0
物理 高校生

どうしてマーカーの式になるのか教えて欲しいです🙇🏻‍♀️ (き)と(く)です。

14 2022年度 物理 立教大理 (2/6) VI.次の文を読み、下記の設問1.2に答えよ。 解答は解答用紙の所定欄にしるせ 電場や磁場の影響を受け, xy 平面上を運動する荷電粒子を考える。 図1のように, y 軸方向正の向きに強さE の一様な電場がかかっているとする。質量m, 電気量g(g > 0) の荷電粒子が時刻 t = 0 に原点から初速度v=v, 0 ) ( 0 ) で運動を開始した。時刻でのこの粒子の位置は である。 (x, y) = ( い ) 立教大理(2/6) max= お ma か 2022年度 物理 15 となる。このことから,この粒子の運動は, by 座標系に対し一定の速度 (きく で運動する観測者から見ると円運動であることがわかる。 この粒子が xy 平面上に描く軌 道をCとする。 また, 質量m 電気量gの荷電粒子が原点Oから初速度 =(0.0)で運動する場合の軌道を C' とする。 このとき、CはAである。 ~くにあてはまる数式をしるせ。 文中の空所 A にあてはまる記述としてもっとも適当なものを、次のaf から 1つ選び、その記号をしるせ。 初に y 軸を通過するときの時刻はt= 図2のように, xy 平面に垂直に, 紙面の裏から表に向かって、磁束密度B の一様な磁 場がかかっているとする。 質量m, 電気量 gg > 0) の荷電粒子が時刻 t = 0 に原点 0から初速度v=v,0) > 0) で運動を開始した。 この粒子が運動開始後に最 1. 文中の空所 う で、そのときの座標は (x,y) = (0, え ) である。 図3のように, y 軸方向正の向きに強さE の一様な電場と, xy 平面に垂直に紙面の裏 から表に向かって、磁束密度 B の一様な磁場の両方がかかっているとする。 質量m,電 気量g(g> 0) の荷電粒子が時刻 t = 0 に原点から初速度 = (0,0)で運動を 開始した。 この粒子のx軸方向, y 軸方向の速度をそれぞれ Ux, Uy, 加速度をそれぞれ Qs, ay とすると,運動方程式は y a.Cと同じ b. Cをx軸に対して反転させたもの C. Cをy軸に対して反転させたもの dCを原点Oを中心として反時計回りに90°回転させたもの e. Cを原点Oを中心として180°回転させたもの 4.Cを原点Oを中心として反時計回りに270°回転させたもの 1. MA や ド 図1 E ひ O 0 B B 図2 図3

回答募集中 回答数: 0
物理 高校生

物理です至急お願いします、 教科書の問題を解いたのですが答えが見つからないので正しいか見てほしいです。

例題 8 ヤングの実験 2枚のついたてA, B を平行に立て, Aにはス リット So, B には狭い間隔 dでスリット S1 S2 が備えられている。 Bから距離Lはなして, A, Bに平行にスクリーンCを置く。 S の左側の 光源から、波長の単色光 (赤色) を送ると, C に明暗の縞模様が観察された。 S1, S2 の垂直 等分線とCとの交点をOとする。 So から S, 光源 S2 までの距離は等しく, L≫ d とする。 次の各問に答えよ。 S₁ L B (1) 点0から上向きに距離 x はなれた点をPとする。 S, S2 から点Pまでの光の経路差を, d, L, を用いて表せ。 ただし, L≫x とし, 0が十分に小さいとき, sin0≒tan が成り立つことを用 いよ。 (2)点から上向きに数えて1番目の明線と点0との間の距離を求めよ。 目 光 仮 ト 求 準 10 75 ① 指針 S, S2 から点Pまでの2本の光の経路は,L≫dなので,平行とみなし、経路差を考える。 2 この経路差が波長の整数倍のときに,2つの光は強めあう。 解 (1)S1, S2 から点Pまでの光の経 路は, L≫dであり, 平行とみなすこと ができる。 したがって, 図のように, 経 路差は dsin である。 0は十分に小さ いので, 近似式を用いると, L x dsin0≒dtan0=d ...1 P Sz 0 0 S₁I 経路差 dsin 0-m) (2)点から数えて1番目の明線は, S, S2 からの経路差が入となる位置にできる。 求める距離を x' とすると, 式 ① を用いて, L x'= L入 d 類題 8 ヤングの実験で, 間隔が0.50mmのスリットに単色光を入射させたところ, 1.5m はなれた スリットに平行なスクリーン上の中央付近に、間隔が1.8mmの干渉縞が観察された。この光の 波長を求めよ。 ③ 15 20 TRY 干渉縞のようすを考えよう 例題8において,次の (ア)~ (エ)に示すように実験条件を変えた場合, 点0から数えて1番目 この明線の位置は、0に近づくか, 0から遠ざかるか, それとも変わらないか。 理由とともに答 25 えよ。 (ア) スリットの間隔dを大きくした場合 A = L とざかる (イ)スリットからスクリーンまでの距離Lを大きくした場合 近づく (ウ)光源の単色光を赤色から青色のものに変えた場合→小さくなるか (エ) BC 間を屈折率n (1) の液体で満たした場合 202 第II章 波動 ・きょり→丈 入は小さくなる→ちがおく 4 スク

回答募集中 回答数: 0
物理 高校生

問5相対速度の問題で、解答にある相対速度が表されてる図が何故そうなるのか教えて頂きたいです。 相対速度を考えるときの図の書き方も教えて頂きたいです。 回答よろしくお願いします🙇🏻‍♀️

物理 次に,AさんとBさんは、発射台が水平面に固定されていない場合の現象につ いて考察している。ただし、図3のとは正しくは描かれていない。 Aさん: 発射台が水平面上をなめらかに運動できるとき, 図3のように発射台から 見て水平方向から45°の方向に小球を打ち出すと, 小球が水平面に衝突す る直前の速度方向と水平面のなす角度が 45° とは異なるよ。 Bさん:小球を打ち出したときの反動で,発射台が動いてしまうのが原因だね。小 球が水平面に衝突する直前の速さをひとして考えてみよう。 打ち出した直後 落下する直前 小球 <45° 発射台 小球 水平面 水平面 問5 次の文章中の空欄 10 ものを,それぞれ直後の { 11 物理 に入れる式または語句として最も適当な } で囲んだ選択肢のうちから一つずつ選べ。 Aさん:Φ=60°になるとき,小球を打ち出した直後の,発射台に対する小球 の速さ”はどうなるだろう。 Bさん:発射台に対する小球の相対運動を考えると求められるよ。小球を打ち 出した後の台の速さをVとすると, v= 10 0 √2(V) ② √2V+ 2(+12/20) ③√√2 (V-v') ④ √2 (V+α) となるよ。 Aさん:一方で,発射台の質量が小球の質量より十分大きいときは ① 0°に近い値 11' 図 3 問4 小球を打ち出した後の発射台の速さはいくらか。 最も適当なものを,次の① ⑥のうちから一つ選べ。 ただし, 発射台の質量をM, 小球の質量をとす る。 9 mv'sin 45° mv'cos 45° mu'sino M M M mv'cos o M 2mv'sin 2mv'coso M M 11 ② 45°に近い値になるよね。 ③ 90°に近い値

回答募集中 回答数: 0