学年

教科

質問の種類

物理 高校生

物理の熱効率についてです。 写真の問題の(4)の熱効率を求める時に、公式が e=(Qin-Qout)/Qin=W’/Qin となるのはわかるんですが何がQinで何がQoutで何がW’なのかがよくわからなくて、結果的になぜ赤ででかこってるように公式に代入されるのかがわかり... 続きを読む

例題4 気体の状態変化・熱効率 (Pa) B 2p 単原子分子理想気体" [mol] に対して,図男[] の3つの過程をくり返して状態をゆっくり 変化させた状態Aの気体の温度を T[K],気体定数を R[J/ (mol・K)] とする。 BCは等温変化であり,その際,気体 は外部から1.4nRT [J]の熱量を吸収した。 次の各量をn, R, T を用いて表せ。 (1) 状態 B の温度 TB [K] A C 0 V 2V 体積(m²) (2)A→Bで,気体がされた仕事 WAB [J] と気体が吸収した熱量 QAB [J] (3)CAで,気体がされた仕事 WcA[J] と気体が吸収した熱量 Qca[J] (4) このサイクルを熱機関とみなしたときの熱効率e(有効数字2桁) p.439 指針 ABは定積変化, BCは等温変化, CAは定圧変化である。 (1)ボイル・シャルルの法則 (p.110 (6)式) より TB = 2T[K] (2)ABは定積変化であるから WAB=0J, QAB = 4UAB 3 = nRT [J] 15 2 (3)C→Aは定圧変化であるから,状態Aでの状態方程式 V = nRT を 用いると,気体が外部にした仕事 WcA' [J] は Wca'=p(V-2V)=-pV=-nRT よって,気体がされた仕事は WCA=-WcA'=nRT [J] また,気体が吸収した熱量は, 熱力学第一法則 (p.122 (25) 式)より 5 QCA=4UCA - WCA == 12/23nRT-nRT=-1/2nRT[J] 2 (4)BCは等温変化であるから, 気体が外部にした仕事 WBc'[J] は WBc'=QBc=1.4nRT[J] よって,熱効率の式「e=W' -」 (p.135(47) 式) より Qin e= WAB' + WBc' + WCA' QAB + QBC = 0+1.4nRT- nRT 4 (3/2)nRT +1.4nRT ≒ 0.14 29 類題4単原子分子理想気体に対して、図の4つの 過程をくり返して状態を変化させた。 この (Pa) サイクルを熱機関とみなし カ B

解決済み 回答数: 1
物理 高校生

熱力学です STEP3でQinがn(Cv+R)(T2-T1)となってますが、どうやってこれ出してますか??

>>1 圧縮 比例 1 V グラフ ら、熱 出題パターン 38 定モル比熱と定圧モル比熱 「ピストンつきの容器内に, n モルの理想気体が, 体積V1, 温度Tで閉じ こめられている。 大気圧はp, 気体定数は R, 定積モル比熱を Cvとする。 「ピストンを自由に動けるようにして、熱を与えて温度をT2にした。この とき, 内部エネルギーの変化 4U, 気体が外部にした仕事 Wout. 気体に加 えた熱 Qin はいくらか。 また、 以上の結果から,気体の定積モル比熱 Cr と 定圧モル比熱 C, の間にはどのような関係があるか。 解答のポイント! 定圧変化であっても4U = Con⊿T の形となることに注意。 解法 熱力学の解法3ステップで解く。 AJR STEP1 変化の前後でのか,Vn,Tを 図示する。 ここでピストンは自由に動けるので, ピストン内の気体の圧力は大気圧とつりあって いて,いつもpとなる。 このように、大気圧、 重力などの一定の力を受け自由に動けるピスト 前 p V₁ 4 大気圧 nTi ンでは、必ず定圧変化になるのだ。 また、後の圧力 体積を V2 (未知数) とおくと, DV2 n T2 大気 1圧 図 11-4 前 (3 p Nout 前:pV=nRT ... 1 負 後:pV2=nRT ... ② -Wout E縮 STEP2 Vグラフは図11-5のようにな る。 色のついた部分の面積が外へした仕事 Wout V₁ V2 体積V 1). になる。 図 11-5 いる にあ STEP3 熱力学第1法則を表 (表中雪)にまとめると, Qin n(Cy+R) (T2-T, + 4U Wout Cyn (T-T) |p (V2-V)=nR(T2-T) (1②より) また,定圧モル比熱 C, は, 圧力一定で1モルの気体を1K上昇させるのに要する熱 であるので,Qmでn=1 [mol], T2-T=1 [K] としたものに等しく. C=1x (Cy+R)×1=Cv+R この式は理想気体であれば必ず成立するので、この例題とともに覚えておこう。 STAGE 11 気体の熱力学 125

解決済み 回答数: 1
物理 高校生

熱力学です STEP3でQinがn(Cv+R)(T2-T1)となってますが、どうやってこれ出してますか??

出題パターン 38 定積モル比熱と定圧モル比熱 ピストンつきの容器内に、 モルの理想気体が, 体積 V1. 温度Tで閉じ こめられている。 大気圧はp, 気体定数は R, 定積モル比熱をCとする ピストンを自由に動けるようにして、熱を与えて温度を T2 にした。この とき, 内部エネルギーの変化 4U, 気体が外部にした仕事 Wout 気体に加 えた熱 Qin はいくらか。 また、 以上の結果から, 気体の定積モル比熱 Cr と 定圧モル比熱Cの間にはどのような関係があるか。 解答のポイント! 定圧変化であっても 4UCn4T の形となることに注意。 解法 熱力学の解法3ステップで解く。 STEP1 変化の前後でのか,V,n,Tを 図示する。 ここでピストンは自由に動けるので、 ピストン内の気体の圧力は大気圧とつりあって いて、いつもp となる。 このように、大気圧, 重力などの一定の力を受け自由に動けるピスト 前 p V₁ 大気圧 nTi D V2 大気 nT2 図 11-4 ンでは、必ず定圧変化になるのだ。 また後の圧力は最 体積を V2 (未知数) とおくと, 前:pV=RT ... ① 前 圧 Wout 後:pV2=nRT2 ... ② STEP2 Vグラフは図11-5のようにな る。 色のついた部分の面積が外へした仕事 Wout になる。 0 V₁ V2 体積V 図11-5 STEP3 熱力学第1法則を表 (表中) にまとめると, Qin 4U + Wout n(Cy+R) (T2-T) Crn (T2-T)p (V2-V)=nR(T2-T) (1 ②より) また,定圧モル比熱 C, は, 圧力一定で1モルの気体を1K上昇させるのに要する熱 であるので,Qmmでn=1 [mol], T2-T, = 1 [K] としたものに等しく =1x (C+R)×1= [Cy+R この式は理想気体であれば必ず成立するので、 この例題とともに覚えておこう。 STAGE 11 気体の熱力学 125

解決済み 回答数: 1