学年

教科

質問の種類

物理 高校生

305の問題の(2)がよく分かりません。特に解説の赤線で引いてるところが理解できません。(1)と(2)っておんさが直角になるだけでそんなに変わるものなんですか?教えて欲しいですm(_ _)m

きるものとし、重力加速度の大きさを9.8m/s とする。 また、弦を伝わる波の速さ [m/s] は, 張力の大きさ を S[N],線密度を p[kg/m] とすると, (1) 弦を伝わる波の波長 [m] を求めよ。 (2) 弦を伝わる波の速さ [m/s] を求めよ。 (3) このときの振動子Pの振動数f [Hz] を求めよ。 と表されるものとする。 305 おんさと弦の共振知 図1に示すように,おんさ の振動部Aに糸の一端をつけ、滑車を通して他端におもり をつるした。おんさの振動数は60Hz, AB間の糸の長さ は 2.0mである。 おんさを振動させたところ,腹が6個の 定在波ができた。 2.0kg 例題 57,313,314 2.0m A B 60Hz 図 1 おもり -2.0m (1) 糸を伝わる波の速さ [m/s] を求めよ。 UA B (2) (1)で,おんさと糸との関係を、 図2のように変えたと きできる定在波の腹の数はいくつか。 例題 57 図2 作図 306 気柱の振動知 長さが 0.60m の閉管内の気柱があ る振動数の音で共鳴した。 このとき,管の底以外に定在波 の節が1か所あった。 音の速さを3.4×10°m/sとし、 開口 端補正は無視する。 0.60 m (1) 閉管内にできる定在波のようすを図示せよ。 (2) 気柱内の音波の波長は何mか。 (3) 気柱内の音波の振動数fは何Hz か。 例題 58 ・気柱の共 OB の管口か (1)この音 (2) この (3) 位置 (4) ピス 310 して 管の 長さ 補工 (1) (2) とき (3

解決済み 回答数: 1
物理 高校生

黄色マーカーのところなんで-gなのですか?

x 解説動画 発展問題 48, 52 発展例題5 斜面への斜方投射 物理 Vo 図のように、傾斜角 0 の斜面上の点0 から, 斜面と垂直な 向きに小球を初速 で投げ出したところ, 小球は斜面上の 点Pに落下した。重力加速度の大きさをg として,次の各問 答え 0 OP (1) 小球を投げ出してから、斜面から最もはなれるまでの時間を求めよ。 (2) OP 間の距離を求めよ。 思考 44.2 球 達した た。 こ 小球日 t=0, とし 指針 重力加速度を斜面に平行な方向と垂 直な方向に分解する。 このとき, 各方向における 小球の運動は,重力加速度の成分を加速度とする 等加速度直線運動となる。 1 0=vot₂-9 coso.tz² (1) (2) (4) 0=t Vo 解説 200 (1) 斜面に平行な方向 にx軸, 垂直な方向に y軸をとる(図)。重力 加速度のx成分,y成 分は,それぞれ次のよ うに表される。 20から, t2= gcoso gsino 45. -gcose, g ら, OP間の距離 xは, P x= x方向の運動に着目すると, x= -gsinO・2 か -129sin0-13-12 gsing-(20)* げ gcoso x成分: gsin y 成分:-gcosd 方向の運動に着目する。 小球が斜面から最も はなれるとき,方向の速度成分 vy が 0 となる。 求める時間をとすると, vy=vo-gcoso・t の式から, Point 2vtan0 gcose m ( 方向の等加速度直線運動は, 折り返 し地点の前後で対称である。 y=0から方向 の最高点に達するまでの時間と,最高点から再 びy=0に達するまでの時間は等しく, (D) 4 0=vo-gcoso・t t₁ = Vo gcoso (2) Py=0の点であり, 落下するまでの時間 t2=2tとしてtを求めることもできる。 を友として,「y=vot-1/12gcost・12」の式から、 発展問題 [知識] A 43. 投げ上げと自由落下 図のように,高さ19.6mのビルの 屋上から 小球Aを真上に速さ14.7m/s で投げ上げた。 小球 Aは,投げ上げた地点を通過して地面に達した。 重力加速度の 大きさを 9.8m/s2 として, 次の各問に答えよ。 14.7m/s A B (1) 小球Aが地面に達するのは,投げ上げてから何s後か。 19.6m

解決済み 回答数: 1
物理 高校生

この問題の(3)の後半についてで、解答には力学エネルギーが保存すると書いてあるのですが、保存する理由は、小球と台が受けてる保存力以外の力は、台がストッパーSから受けてる力のみで、ストッパーは動かないのでF【N】×0【m】=0【J】より、仕事をしていないので、小球と台のに物体... 続きを読む

17 曲面AB と突起 Wからなる質量 Mの台が水平な床上にあり,台の左 側は床に固定されたストッパー S に 接している。 Bの近くは水平面とな っていて,そこからんだけ高い位置 にあるA点で質量m(m <M) の小 A 小球 m h 台 S M W B 床 床 39 球を静かに放した。 小球は曲面を滑り降りて突起 Wに弾性衝突し,台 はSから離れ,小球は曲面を逆方向に上り始めた。台や床の摩擦はな 重力加速度を①とする。 突起 Wと衝突する直前の小球の速さはいくらか。 小球がWと衝突した直後の, 小球と台の速さはそれぞれいくらか。 (3) 小球が曲面を上り,最高点に達したときの台の速さはいくらか。 また,最高点の高さ(Bからの高さ)はいくらか。 次に,ストッパーSをはずして, 台が静止した状態で,小球をA点 で静かに放す。Ins Wに衝突する直前の,小球と台の速さはそれぞれいくらか。 Wとの衝突後, 小球が達する最高点の高さはいくらか。 (東京電機大+日本大)

解決済み 回答数: 1
物理 高校生

(2)で9.8t=20を計算してt=2.04816...で有効数字から2.0sになることはいいんですが、(3)で2.04を使って計算していて今回みたいに割り切れなくて次の問題で使うって時どこまで値をとるんですか? 教えてください わかりにくかったら申し訳ないです

① 基本例題7 斜方投射 物理 高 基本問題 41,42 水平な地面から, 水平とのなす角が30° の向きに 速さ 40m/sで小球を打ち上げた。 図のようにx軸, 軸をとり、重力加速度の大きさを 9.8m/s2 として 次の各問に答えよ。を求め、 y 40m/s 30° 地面 x (1) 打ち上げてから0.20s 後の速度の成分 成分と, 位置のx座標, y 座標を求めよ。 (2) 打ち上げてから最高点に達するまでの時間を求めよ。 (3) 地面に達したときの水平到達距離を求めよ。 指針 小球は, x方向には速さ 40cos 30% m/sの等速直線運動をし, 夕方向には初速度 40sin 30°m/s の鉛直投げ上げと同じ運動をする。 最高点に達したとき, 小球の速度の鉛直成分は であり, 打ち上げてから地面に達するまでの時間 は、最高点に達するまでの時間の2倍となる。 「解説」 (1) 速度のx成分,成分は, √3 ひx=40cos30°=40x =20√3 2 =20×1.73=34.6m/s 35m/s Min v=vosino-gt=40sin30°-9.8×0.20 =40x- 12-1.96=18.0m/s 18m/s 位置のx座標, y 座標は, d x=vxt=34.6×0.20=6.92m 6.9m y=vesindt- 2 912 ×9.8×0.202 =40sin30°×0.20-12× =3.80m 3.8m (2) 求める時間は,v=0 となるときであり, v=vosine-gt」から, 0=40sin30°-9.8xt t=2.04s 2.0s (3) 水平方向には等速直線運動をし、地面に達 するまでに (2) で求めた時間の2倍かかるので、 x=vxt=34.6×(2.04×2)=141m 1.4×10m

解決済み 回答数: 1
物理 高校生

物理 熱 下の画像の、データ処理と書いてある下の問題を教えてください。 お願い致します🤲

73 B 実験水の温度変化を利用して、 金属の比熱を調べよう 日 【目的】 加熱したアルミニウムを水の中に入れ、水温の変化を測定する。このとき、熱が外部に 逃げなければ、熱量の保存が成り立つと考えられ、これを利用して比熱が求められる。文 献によると、アルミニウムの比熱は0.902 (J/g・K) であるが、測定値と比較し、異 なる場合はその原因を考察する。 【準備】 水熱量計、温度計、糸、アルミニウム(たぶん100g), メスシリンダー、計量カップ 【手順】 ① 水熱量計の銅製容器とかきまぜ棒を取りはずして、それらの質量 m〔g〕(=140g) を測定する。(今回は省略) ② アルミニウムの質量m2 〔g] を測定する。 ③水熱量計の銅製容器に水 200mLを入れる。 このとき、水の密度 は 1.0g/cmとして、水の質量 m3 〔g] とする。 →200g ④ 水熱量計を再び組み立てる (今回は省略)。しばらく放置した あとに、水の温度 [℃] を測定する。 ⑤ 図ではビーカーであるが、 今回は沸騰した水を電気ポッドから 計量カップにいれ、 その中に糸をつけたアルミニウムを完全に入 れてしばらく置く。 このときのお湯の温度 [℃] を測定して アルミニウムの温度とする。 熱平衡 ⑥ 糸をもってアルミニウムを取り出し、素早く水熱量計に移す。 ※注意:アルミニウムについた湯をよく払って移す。 ⑦ すぐにふたをして、かきまぜ棒を上下にゆっくりと動かす。 温度 ⑧ 水温の上昇が止まったら (30~40秒後) 水温 4 [℃] を測定する。 【データ処理】 アルミニウム を水 移ず 1 かきまぜ (鋼製) ① アルミニウムの比熱をc 〔J/gK] として、アルミニウムが失った熱量Q [J] を求める。 ② 水の比熱 4.2 J/ (g・K) を用いて, 水が得た熱量 Q2 〔J] を求める。 ③ 銅の比熱 0.38J/ (g・K) を用いて, 銅製容器とかきまぜ棒が得た熱量 23 [J] を求める。 ④ 温度計が得た熱量は小さいものとして無視し, Q=Q2+ Q3 の関係から,アルミニウムの比 熱c [J/g・K] を求める m1140g に m2=100g m3:200g +1=21.30 +2=772+3=26.6°

回答募集中 回答数: 0
物理 高校生

Ⅱの(4)をsin cos関数を使って解いたのですが答えが合いませんでした。どこが間違っているのかと正しい解法を教えて頂きたいです。お手数お掛けしますが宜しくお願い致します。

1/25 4/29 pooooooo 33 単振動 ばね定数のばねを鉛直に立て,上端に質量 M の板を取り付け、静止させる。そして,質量mの 小球をこの板の上方んの高さから静かに落下させ る。 重力加速度をg とする。 I. 物体が板と弾性衝突をする場合について (1) 衝突により小球がはね上がるためには,m とMの間にどのような関係が必要か。 33 単振動 99 mmmmm M (2) 衝突後,板ははじめの位置より最大どれだけ下がるか。衝突は 1度だけとする。 II. 小球が粘土のようなもので,衝突後, 板と一体となって運動する 場合について, (3)衝突の際,失われる力学的エネルギーはどれだけか。 (4) 板ははじめの位置より最大どれだけ下がるか。 (東工大) Level (1) (2),(3)★ (4) ★★ Point & Hint TS (1) (3) とくに断りがなければ, 衝突は瞬間的なものと考える。 その場合、重力の 力積は無視でき, 衝突の直前, 直後に対して運動量保存則を用いてよい。 弾性衝 突では全運動エネルギーが保存されるが, 反発係数 (はね返り係数) e=1 として 扱ったほうが計算しやすい。 (2), (4) ばね振り子のエネルギー保存則には,次の2通りの方法がある。 A: 1/12mu2+1/21kx2=定 (xは振動中心からの距離) 単振動の位置エネルギー B: 1/12mo+mgh+1/21kx定(xは自然長からの距離) 弾性エネルギー 12/23kx2 のもつ意味の違いと、xの測り方の違いを押さえておくこと。多くの場 合, A方式の方が計算しやすいが,(4)では注意が必要。

回答募集中 回答数: 0