学年

教科

質問の種類

物理 高校生

(9)はどうして赤ペンのような式になるんですか?? 私の考え方のどこが間違えてるのか教えて欲しいです🙇🏻‍♀️

II 次の文章の空欄にあてはまる数式, 数値または語句を, それぞれ記述解答用紙の所 定の場所に記入しなさい。 ただし, (1)~(10)の解答欄には数式または数値を, (11)の解答 欄には語句を記入しなさい。 (33点) 図1に示すように抵抗とコイルをつないだ回路で, スイッチSを閉じたり開いた りしたときに回路に流れる電流を考えよう。 電池の起電力をE, コイルの自己インダ クタンスをL, 2つの抵抗の抵抗値は図1のように r, R とする。 電池と直列につな がれた抵抗値rの抵抗は電池の内部抵抗と考えてもよい。 また, 導線およびコイルの 電気抵抗は無視できるものとする。 b a d E 図 1 h In R g ERO h S スイッチSを閉じた後のある時刻にコイル, 抵抗値 R の抵抗を図1の矢印の向き に流れる電流をそれぞれ I, I と書くことにする。このとき, 抵抗値の抵抗を流れ る電流は (1) となる。 経路 abdfgha についてキルヒホッフの法則を適用すれ ば、電池の起電力と回路に流れる電流の間にはE= (2) の関係が成り立つ。 一方、このときコイルを流れる電流が微小時間 4tの間にだけ変化したとすると, -10- LI+(r+B)I

回答募集中 回答数: 0
物理 高校生

(2)でなぜBが高電位になるのか分かりません 回転すると右向きの磁束が増えるからそれを妨げるために、AからBの向きに電流が流れるのでAが高電位になるんじゃないんですか?

f B セント 135 〈交流の発生> 113 (2) 辺abは磁場を横切る体なので、 誘導起電力の式 「V=Blo」 を用いる。 (3)(pq間に発生する誘導起電力) (コイルの各辺に生じる誘導起電力の和) 標準問題 (5) コイルに生じる誘導起電力の大きさは、ファラデーの電磁誘導の法則 「V=-N4 at」を用いる。 A 135.〈交流の発生> 図1のような辺の長さが1の正方形 abedからなる1回 巻きのコイルを,磁束密度Bの均一な磁場の中に置き、 磁 力線に垂直な軸のまわりに,一定の角速度で図の矢印の 向きに回す。 コイルの両端はそれぞれリング状の電極p と qを通して,常に抵抗Rとつながっている。 このとき、コ イルは回転するが, リング状の電極と抵抗は静止したまま である。図2(a) と (b)は回転軸にそって見たコイルと磁力線 (a) = 0 である。図2のように,コイルの面と磁場の角度は,時 N S P 9 R- 図 1 B (b) t=to N S N S 刻 t=0 のとき 0=0, 時刻t=to のとき 0<B<1であ R cd ab 8 図2 った。次の問いに答えよ。 [A]各辺に生じる誘導起電力を考えることで, pq 間に発生する誘導起電力を考える。答 えには1,B,w, tのうちから必要なものを用いよ。 〇 (1) 辺 ab 部分の速さを表せ。 (2)時刻における辺 ab 部分に生じる誘導起電力の大きさを表せ。 (3) 時刻 t における各辺に生じる誘導起電力を足し合わせることで, pq間に発生する誘導 起電力 Vの大きさを表せ。 〔B〕 ファラデーの電磁誘導の法則を考えることで, pq 間に発生する誘導起電力を考える。 答えには l, B, w, tのうちから必要なものを用いよ。 (4) 時刻 t におけるコイルを貫く磁束を表せ。 (5) 時刻 t におけるコイルに生じる誘導起電力 Vの大きさを表せ。 ただし、必要であれば, 次式を利用してよい。 Asin wt =wcoswt, 4t ⊿coswt =-wsin wt At [C] 抵抗に流れる電流I と消費電力Pを考える。 p から抵抗を通って q に流れる電流の向 きを正とする。 記 (6) 時刻 t = to における辺 ab に流れる電流Iの向きを図1に矢印で示せ。 また電流Iに よってコイルが磁場からどのような向きの力を受けるか説明せよ。 (7) 消費電力の最大値 Pmax を1, B, w, R のうちから必要なものを用いて表せ。 また, P と wtの関係を 0≦wt2 の範囲でグラフに図示せよ。 [23 徳島大〕 (8)電流が磁場から受ける力 「FIBL」の向きは、フレミングの左手の法則より判断する。 2 (7)消費電力Pは, 「PIV=PR=」から適当な形の式を用いる。 〔A〕 (1) 辺abの速さひab は, コイルの回転半径が であるので,速さと角 2 速度の関係式 「v=rw」 より Vab 51=- (2) 時刻において,辺ab は水平から角度 wt 回転しているので 辺ab の磁 場に垂直な方向の速度成分 Vabi は図a より 上向きを正として Vabi = Dab COSWt=coswt と表される。 辺ab に生じる誘導起電力の大きさ | Vab|は, 「V=Bl」 より |Vab|=|Blvabi|=| 11=B1.12 cost=/12/Blacoswt| このとき,swt< ならば誘導起電力の向きはレンツの法則A より bが高電位となる向き ※Bである。 (3) 磁場を垂直に横切る辺は辺abと辺cdであり, これらの辺にのみ誘導起 電力が生じる。 辺cdについても 時刻に生じる誘導起電力の大きさを |Veal として求めると, 辺ab についての(1),(2)と同様になり <<-*A によっ くる磁 れた磁 B 公式カ 状 |V|=|Blucas|=|Bl-cos wt|=Bl³w|cos wt| 誘導書 Out < ならば誘導起電力の向きはレンツの法則よりdが高電位とな る向きである。 求め V=|Van|+|Vcal=12Blwlcoset|+1/2 よって Vab と Veaの誘導起電力の向きは同じ方向であるので, pq間に発 生する誘導起電力の大きさ Vは Blwcoswt|=Bl°ω\coswt| 〔B〕 (4) コイルの面積をSとする。 時刻において, コイルは水平から角 ・度回転しているので、 磁場に対して直角方向に射影したコイルの面積 Sは図bより S=S|sint|=|sinet| このとき、コイルを貫く磁束は、磁束の式 「Ø=BS」より, 0<wt<πで のコイルの向きに対してコイルを貫く磁束を正とすると =BS = Blsinat (5)(4)においてコイルに生じる誘導起電力 Vの大きさ|Vは,ファラデーの 電磁誘導の法則 「V=-N2」より 4t |V|=|-1×40 |=|_ A(BIªsinwt)|=|- BF²-- =l-Bl2wcoswtl=Blw\coswt|C Asin wt At ---

回答募集中 回答数: 0
物理 高校生

なぜ答えは③になるのでしょうか

図1に示すように、磁束密度の大きさが B 〔T] でy軸の正の向きを向いた一様 な磁場 (磁界) 中で, 細い導線でできた長方形の一巻きコイル ABCD が回転する。 辺AB と辺 CD の長さはα 〔m〕 であり,辺BCと辺DAの長さは6〔m〕 である。 辺 AB, BC, CD の電気抵抗は無視できるが, 辺 DAの電気抵抗は R [Q] である。 点Aは座標原点にある。 コイルは軸にある辺AD を軸にして,軸の正の側か ら見て反時計回りに一定の角速度w 〔rad/s] で回転している。 一巻きコイルの自 己インダクタンスは無視できる。 必要であれば以下の公式を用いてもよい。 sin (a ±3 = sin a cos β ± cosa sin 3 cos(a±β)= cos a cos β 干 sin a sin β Z (複号同順) 図1のように, 軸の正の向きと辺ABのなす角が0 〔rad〕 のとき, 辺BCの速度 ア である。 辺BCの中にある電荷-e [C] (ただ の成分 [m/s] はv= 0-0のとき、 le > 0) を持つ自由電子の速度のæ成分もと同じとすれば, 0<0く 電子は イ のローレンツ力を受ける。 これによって, 閉じている一巻きコ イル ABCD には誘導電流が流れる。 2 これを,コイルを貫く磁束が時間的に変化するという見方で見てみよう。 コイル の面と常に垂直でコイルとともに回転する矢印Nを図1のようにとる。 コイルの面 を矢印Nの向きに磁束線が貫く場合, コイルを貫く磁束は正, 逆向きに貫く場合 πT を負とする。 0 の範囲がー <0 の場合,磁束線はコイルを矢印Nの向きに買 2 2 いており, コイルを貫く磁束 (0) 〔Wb] は ウである。ファラデーの電磁誘

回答募集中 回答数: 0
物理 高校生

線を引いたところで飛行機に対して平行な方向へ投げたら相対速度と実際の速度は変わりますか? また最後の問いの時はY軸方向の初速度が50だからずっと50m/sということで合っていますか?

第1問 図1のように、水平な地表面上に軸と y軸を設定する。軸と軸は直交している。飛 行機がy軸の上方490mを速さ50m/sで y 軸正 の向きへ水平に飛んでいる。 この飛行機が xy 座 標の原点 0 の真上 (鉛直上方) を通過した瞬間に 小球を投げ出す場合を考える。 空気抵抗は無視で きるものとし、重力加速度の大きさを 9.8m/s2と して以下の問いに答えよ。 数値については,有効 数字2桁で答えること。 高さ490m 速さ 50m/s 図 1 → 小球を水平方向に投げ出すとする。 飛行機に対する小球の速度をある向きである大きさに したら, 小球が原点0に落下した。 (2) 問1 小球を投げ出す速度 (飛行機からみた速度)の大きさと向きを答えよ。 向きを答える には,どの軸の正負どちら向きかを答えること。 問2 小球が投げ出されてから地表に達するまでにかかる時間を求めよ。 (T) 次は,小球を飛行機に対して速さ4.9m/sでæ軸正の向きに投げ出した場合を考える。 問3 落下地点のæ, y 座標をそれぞれ求めよ。 (31) 今度は,小球を飛行機から見て真下向き (飛行機に対する相対速度が鉛直下向き)に速さ 49m/sで投げ出した場合を考える。 問4 落下地点のæ, y 座標をそれぞれ求めよ。

回答募集中 回答数: 0