学年

教科

質問の種類

物理 高校生

(2)の電流の向きについて。この時に生じる誘導電流は「y軸の負の向き」だと思うのですが、答えが「y軸正の向き」になっているのは、誘導起電力vBlよりも起電力Eの方が大きいため、相対的に起電力Eから生じる電流の方向き「y軸正の向き」になると言うことですか?

基本例題 89 磁場を横切る金属棒に生じる誘導起電力 448,449 解説動画 図1のように, 真空中に金属レー ルが水平に置かれ、その上を金属棒 がなめらかに移動できるようになっ ている。 金属棒の長さはl [m] で, レールの間隔に等しい。 またレール 面と垂直に、磁束密度B [T] の磁場 が加えられている。 レールの方向を x軸, 金属棒の方向をy軸とする。 磁場の向きはz軸の正の向き (紙面 裏から表の向き)である。 a レール B 金属棒 ◎磁場 抵抗 R 2 図 1 a 2 軸の 正の向き a E- ひ ひ b b 図2 図3 また、金属棒の抵抗は R [Ω] である。 [A] 図2のように, 端子 a, b間に起電力E [V] の電池 (内部抵抗0) を接続した ところ, 金属棒は動き始めた。 金属棒がx軸の正の向きに速さ [m/s] で動い ひ ◯いるとき (1) 金属棒の両端に発生する誘導起電力の大きさ V [V] を求めよ。 45 金属棒に流れる電流の大きさI[A]と向きを求めよ。 43 金属棒に加わる力の大きさ F [N] を求めよ。 十分長い時間が経過し, 金属棒の速さは一定になった。 このとき 4) 金属棒の速さひ [m/s] を求めよ。 [B] 図3のように, 端子 a, b間に固定抵抗 [Ω] を接続し, 金属棒に外部から力 を加えて動かした。 金属棒がx軸の正の向きに速さ [m/s] で動いている (5) 金属棒に流れる電流の大きさ [A] と向きを求めよ。 指針 磁場を垂直に横切る金属棒に生じる誘導起電力の大きさは Bl [V] である。 向きは,レンツの法則と右ねじの法則とから判断する。 解答 [A] 軸の負の向きの磁場をつくる 向きに誘導起電力 Vが発生(レンツ の法則)。 Vの向きはEの向きと反 対になる (右ねじの法則)。 (1) V=vBl [V] (2) キルヒホッフの法則Ⅱより E-V=RI E-vBl よってI=- [A], R 軸の正の向き E-vBI\ (3) F=IBl= R JBU[N] (4) Fはx軸の正の向きにはたらき (フ レミングの左手の法則), 棒は加速さ れ V の増加とともにVも増す。 がEに達すると,② ③式より I=0, F=0 となり,以後,速さはひで一定 になる。⇒F=0F=D. ③式で,v=v のとき F0 より E-voBl=0 よって E Vo= [m/s] BU [B] (5) 誘導起電力の向きと大きさは [ A ] と同じなのでV=Bl[V] vBl I'= R+r [A],軸の負の向き

解決済み 回答数: 1
物理 高校生

問3番解説の日本語がよく分かりません。H大きくなるとLも大きくなるからと思ったらなんか色々違うみたいでよく分かりません。

AさんとBさんはHをある一定の値にして, んの値が 10.0cm, 15.0cm, 20.0cm, 25.0cm んとHの測定値から予想されたLの値(理論値) も示してある。 表1のんの値は糸の長さよりも小 の四つの場合について実験を行い,Lの測定値を表1にまとめた。 表1には, 問2の方法により, さいとする。 ThH H 表 1 g L〔cm〕 h[cm] 測定値 理論値 10.0 36.2 34.6 15.0 44.0 42.4 進んで 20.0 49.8 48.9 25.0 55.1 54.7 とき D 問3 表1の実験結果では,Lの測定値が理論値よりも大きい。この結果について,AさんとBさ んは次の(ア)~(ウ)のような誤った操作を行ったことが原因だと考えた。 (ア)~(ウ)の操作のうち,Lの 測定値が理論値より大きくなる原因となりうるものはどれか。すべて選び出した組合せとして最 も適当なものを、後の①~⑧のうちから一つ選べ。 13 L=2VWH (ア) Hの値を正しい値よりも大きめに測定した。 (イ)んの値を正しい値よりも大きめに測定した。 (ウ) た。 図2の矢印の向き(糸と垂直で上向き)にわずかに速度を与え 点Pでおもりを放すときに、 速度 おもり P 図2 ①(ア) ④ (ア)(イ) (ア)と(イ)と(ウ) ②(イ) ⑤(イ)と(ウ) ③ (ウ) ⑥ (ア)と(ウ) ⑧ 原因となりうるものはない

解決済み 回答数: 1
物理 高校生

2番のアについて F1=F0のときfが最大摩擦力になるのは何故ですか? 自分で消しゴムと本でやってみたんですけど、一体になっているからと言って静止摩擦が最大とは限らないんじゃないかと思いました。 引く大きさが最大の時よりも小さくても、一体になってますし、どういうことなのでし... 続きを読む

16 20* 基 滑らかな水平面上に質量 M, 長さLの板を置く。 板の上 面はあらい水平面で, 右端に質量 mの小物体Pが置かれている。 重力加速度をg とする。 板 M -L Pam 力 意 数 (1) 板に一定の大きさの力F を水平右向きに加え続けたところ, Pと 板は一体となって運動した。 42 20 力学 17 (1) (ア) P と板の一体化の見方により, 運動方程式は (m+M)a=F ... ① F a=. m+M (イ) Pだけに注目する。Pは板から静止摩擦力を受 けるが、Pの加速度が右向きだから, fも右向きと 決まる (ma=Fよりこの向きはの向き)。 あ るいは,Pは板によって右に「引きずられて」 動い ているという考え方でもよい。 P の運動方程式は ma=f...②.f=ma= すべりがなけれ 静止摩擦力 av YA Fi (ア) 板の加速度αを求めよ。 (イ)Pが板から受けている摩擦力の大きさfを求めよ。 (2) 板とPを静止させ, 板にFよりも大きい一定の力 F2 を水平右向き に加え続けたところ, 板は運動し, Pは板の上をすべり続けた。Pと 板の間の静止摩擦係数をμ, 動摩擦係数をμ' とする。 (ア) Pが板上ですべるためには F2 はある値F。 より大きくなければな らない。 F を求めよ。 (イ) F2 の力を加えているときの板の加速度 A を求めよ。 (ウ) Pが板の左端に達するまでの時間を求めよ。 m m+MF 別解 板に注目する。 板はPから反作用 (赤矢印) を左向きに受ける。 そこで, 板の運動方程式は MaF-f ... ③ ③ 接触があれば 作用反作用に注意 この式に(ア)で求めたα を代入すればfが求められる。 初めから②と③の 連立 (未知数はα と f)で解いてもよい。 ②+③ = ① の関係がある。 つまり、各 部分について正しければ、全体についての式が自然に得られる。 (2)ア) F=F。 のとき, fは最大摩擦力μmg になるから,上の結果より Fo=μ (m+M)g m Fo=μmg m+M (イ)Pは板に対して左へ滑るから、動摩擦力 (神奈川大 + 玉川大 + 鹿児島大) a= 30 4] エネルギー保存則 MA=F2-μ'mg f' =μ'mg を右向きに受ける。 板はその反作用 (赤矢印)を左向きに受けるので、板の運動方程式 は F-'mg A= M 力学的エネルギー保存則 (ウ)Pの加速度を α とすると 運動エネルギー 1/12m+ 位置エネルギー = 一定 ※ 実用上は摩擦がないとき用いられる。 ma' =μ'mg F2 ⇒A やはり板はP を右へ引きずる a='g 板に対するPの相対加速度は 位置エネルギーとしては,重力の位置エネルギー mgh a=α-A=F2-μ' (m+M)g M Pは板に対して初速0で左へ動くから,ここで左向きを正に切り換えると 2L 2 ML =v=VF-μ(m+M)g やばねの弾性エネルギー 1/12hx などがある。 エネルギー保存則 摩擦がある場合は, 摩擦熱という熱エネルギーを考えれば よい。 摩擦熱 = 動摩擦力 × 滑った距離 I=1/2lalt 右向きを正として続けるなら, Pの座標xがx=-Lとなることに注意し, 12/2立する。 なお、一般にμであり、F>Fo=μ(m+M)g>μ'(m+M)g よりα <0と なっている。 40x

解決済み 回答数: 1
物理 高校生

物理基礎の運動の法則の問題です。85の(2)で、加速度が下向きに変化したので、重力、張力の力の他に下向きの力が働く気がするんですけどなぜ働かないのですか。教えていただけると嬉しいです。

重力, そ ってい 重 (2)加速度 1.2m/s2 の等加速度直線運動を 7.0s 間続けているので, 減速し始める直前の速度v は,公式「v=vo+αt」から, ■解説 (1) 糸の張力の大きさをTとすると,図1 物体が受ける力は図1のように示される。鉛直 上向きを正とすると, 運動方程式 「ma=F」は, 5.0×1.2=T-5.0×9.8 T=55 N ,物 (2)物 力である。物体は,力の大きい左向きに運動すると考えられる。左向 きを正として加速度を α 〔m/s2〕 とする。 運動方向の力の成分の和は, 6.0 4.5=1.5N となるので, 運動方程式 「ma=F」は, 3.0xa=1.5 a=0.50m/s2 左向きに 0.50m/s2 85.物体の上げ下ろし (1) 55 N (2) 35 N 02- 物体が受けている力は,重力と糸の張力である。正の向きを定 めて、運動方向の力の成分の和を求め, 運動方程式を立てる。 (2) 速度 の変化から加速度を求め, 運動方程式を用いて計算する。 2.5N 「 正の向き 大きさは は、エレー が大き 6.0N 4.5N 平 が静止 ① 方向 。 物 各問 T〔N〕 1.2m/s2 運動方向の力の成分の 和は, T-5.0×9.8 〔N〕 である。 出すた 介 えよ。 5.0×9.8N 図2 T'〔N〕 2.8m/s2 るが, v=0+1.2×7.0=8.4m/s ↓ 静止するまでに減速した時間は 3.0sなので, 5.0×9.8N その間の加速度αは, a= 0-8.4 3.0 == -2.8m/s2 糸の張力の大きさを T' とし,鉛直上向きを正とすると(図2),運動 運動方程式を立てる際 の正の向きは,初速度の 向きにとることが多い。 また, 上向きの張力を加 えていても、重力よりも 小さいとき,加速度は下 向きとなる。 8.0kg する 張力の 53 53 50と 止し 物体か

解決済み 回答数: 1