学年

教科

質問の種類

物理 高校生

(2)です。黄色マーカーがなぜ2がどこからきたのかわかりません

解 例題 90 絶対屈折率 1.5の油膜が水面に広がっ ている。この油膜に真上から波長 6.0×10-7mの単色光を当て、その反射 光を観察する。 空気の絶対屈折率は1.0, 水の絶対屈折率は1.3とする。 空気(1.0) 油 (1.5) 水 (1.3) (1)この光の油膜中での波長はいくらか。 (2) 油膜の表面での反射は固定端反射と同じであり、裏面(水との 境界)での反射は自由端反射と同じである。この光の反射光が強 め合う最小の油膜の厚さはいくらか。 (1) 屈折率 1.5の油膜中における光の波長は 16.0×10™ x'= == 1.5 1.5 4.0×10m 〔m〕 {2}屈折率の小さな空気から屈折率の大きな油へ進む光の反射では、固定端 反射と同じ反射が起こり、反射の際に半波長分のずれ(π[rad〕だけ位相 のずれ)が生じる。一方、屈折率の大きな油から屈折率の小さな水へ進む 光の反射では,自由端反射と同じ反射が起こる。このように、固定端反射 が1回ある場合の干渉条件は、 強め合い: (光路差) (m+ +1/2),弱め合い(光路差) mλ となる。ここで,入は真空中の波長、 は整数である。 油膜の表面で反射した光と、裏面で反射した光の光路差は油膜の厚さを dとして, 2×1.5xdとなり、反射による位相のずれを考慮して, 反射光 が強め合う条件は, 2x1.5xd=60×10×(m+1/2)(m=0,1,2, ...) d = 2.0 × 10x (m +) dの最小値は,m=0 とおいて do=2.0×107× = 1.0 × 10(m)

解決済み 回答数: 1
物理 高校生

RT0はP0V0と書いても丸になりますか?

24 0 ふる あ 発展例題28 Vグラフと熱効率 単原子分子からなる理想気体1mol をシリンダー内に密 閉し、図のように,圧力と体積VをA→B→C→D→Aの2 順に変化させた。 Aの絶対温度を To, 気体定数をRとする。 (1)この過程で気体がした仕事の和W'はいくらか。 発展問題 328 BC Do A D (2) AB, およびB→Cの過程で,気体が吸収した熱はそ 0 Vo 2V V 0 れぞれいくらか。 (3)この過程を熱機関とみなし, 有効数字を2桁として熱効率を求めよ。 指針 気体が外部と仕事のやりとりをする 過程は,体積に増減が生じたときであり,B→C, D→Aである。 なお,熱効率は,高温熱源から得 た熱に対する仕事の割合である。 Q1 は,定積モル比熱 「Cv=3R/2」 を用いて Q=nCvAT=1×122×(2T-T)=22RT 3 V B→Cは定圧変化である。 気体が吸収した熱量 TA 解説 (1) DAでは, 気体がする仕事 は負になるので, 整理 W'=2po (2Vo-Vo-po (2Vo-Vo)=poVo (2) B, C, D の温度 TB, Tc, TD は,Aとそれ ぞれボイル・シャルルの法則の式を立てると, povo 2po Vo po Vo 2po.2 Vo = To TB To Tc DoVo To Po.2Vo TD TB=2To, Tc=4To, Tp=2To A→Bは定積変化である。 気体が吸収した熱量 Q2は,定圧モル比熱 「Cp=5R/2」 を用いて Q₂=nC₂4T=1׳R×(4T,−2T₁)=5RT, (3)TcTp, T, Ta から, C→D, D→Aで はいずれも熱を放出している。 したがって, W povo Q1 + Q2 (3RT/2)+5RT 熱効率e は, e= Aにおける気体の状態方程式poV=RT から, e= po Vo 13RT/2 DoVo 13po Vo/2 = 2 13 = 0.153 0.15 327 明照

解決済み 回答数: 1
物理 高校生

答えと解き方を教えてください🙇

STEP 1 公式チェック □U1-1 【等速直線運動】 軸上を一定の速度 [m/s] で動く物体が、 時刻 0s に位置x=2〔m) を通過した。この物体の時刻 [s] での位置ェ 〔m〕は? I= 学習時間 do-vt □U1-2 【等速直線運動のグラフ] r〔m〕 tグラフの傾きは 【 1 】 を表す。 また, b-tグラフで囲まれた面積は 【②】 を表す。 傾きは v[m/s] 面積は Do ① Io =rotot 速度 0 0 t(s) t(s) ② 動 □U1-3 【等加速度直線運動】 時刻 0sに原点Oを初速度vo [m/s] で出発して, 一定の加速度α [m/s] でx軸上を運動する物体がある。 物体の時刻 t [s] での速度 v= x= [m/s] は? 物体の時刻t [s] での位置〔m〕は? これら2式からt を消去した式は? □U1-4 【等加速度直線運動のグラフ】 za's x-tグラフの傾きはその瞬間の 【③】 を表す。 x=vot+ at x [m] b-tグラフの傾きは 【④】 を表 し, v-tグラフで囲まれた面積は 【⑤】 を表す。 v[m/s] v=vo+at 傾きは は 2 v²-vo²= ③ ④ 加速度 分 傾きは Vo O t[s]) t t[s] ⑤ 移動距離 □U1-5 【相対速度】 直線上を速度vAで運動する物体Aと速度UB で運動する物体Bがあ る。 Aから見たBの速度 (相対速度) VAB は? VAB = □U1-6 【自由落下】 初速度0m/sで落下する (自由落下する) 小球がある。重力 O+ 加速度の大きさをg 〔m/s'] とし, はじめの小球の位置を原 49 点として鉛直下向きにy軸をとる。 自由落下を始めてかYO ら時間 t [s] 後の小球の速度v [m/s] と位置y 〔m〕 は? v= ¥0 y= y〔m〕 □U1-7 【鉛直投げ上げ】 小球を鉛直上向きに初速度vo [m/s] で投げ上げた。 重力 加速度の大きさをg 〔m/s'] とし, はじめの小球の位置を 原点として鉛直上向きにy軸をとる。 投げ上げてから 時間 t [s] 後の小球の速度v [m/s] と位置y 〔m〕は? これら2式からtを消去した式は? y〔m〕 yo 0= AVO y= O+ 147

解決済み 回答数: 1