学年

教科

質問の種類

物理 高校生

84番についてです。p1は6cmでp2は7.5cmだから同一の深さではないと思います。なぜ同一の深さになるのか教えてください

よ。 90 82 あらい斜面上の運動 傾きの角が30° のあらい斜面 上に質量 5.0kgの物体を置き, これに糸をつけ, 斜面に平行 に上向きの力を加えた。 物体と斜面の間の動摩擦係数を 重力加速度の大きさを9.8m/s² とする。 √3 130 基 (1) 物体が斜面上方に一定速度 3.0m/sで動いているとき, 糸の張力の大きさは何Nか。 (2) 次に,糸の張力の大きさを60N にすると, 加速度の大きさは何m/s2 になるか。 例題 17,89,90 83 水圧 図のように, 高さ 底面積Sの円柱形の物体を、 そ の上面の水面からの深さがdとなるように水中に沈めた。 大気圧を Do, 水の密度をp, 重力加速度の大きさをgとする。 (1) 物体の上面が受ける圧力か と下面が受ける圧力を求めよ。 (2) 物体の上面が受ける力と下面が受ける力の大きさの差を求めよ。 84 液体の圧力 一様な太さのU字管に入れた水と油が図 の位置でつりあっている。 水と油の境界面から液面までの高さ T はそれぞれ6.0cm,7.5cmである。 水の密度を1.0×103kg/m² 6.0cm として,油の密度を求めよ。 水 油 86 浮力■ 質量 m[kg], 密度ρ [kg/m²] の物体を, ばね定数k [N/m] のばねの先端に取りつけ, 密度 po [kg/m²] の液体に完全に沈めたところ, ばねが自然の長さから伸びた状態でつりあった。 重力加速度の大きさを g [m/s²] とし, ばねの質量および体積は無視できるものとする。 (1) 物体が受ける浮力の大きさF [N] を求めよ。 (2) ばねの自然の長さからの伸び x [m] を求めよ。 水面 d 85 浮力 密度が一様な物体を水(密度po [kg/m²]) に浮かべたところ, 物体の仁 積 V[m²] の3分の2が水面より下に沈んだ。 重力加速度の大きさをg [m/s'] とする。 (1) この物体の密度ρ [kg/m²] を求めよ。 (2) 力を加えて物体全体を水面より下に沈めたい。 必要な力の大きさ / [N] を求めよ。 例題18 例題 1893 7.5cm ◆ 87 空気の抵抗を受ける運動■質量m[kg] の小球が空気中を落下す るとき、空気の抵抗力は小球の速さ”に比例し, kv [N] であるとする(k は比例定数)。重力加速度の大きさを g [m/s'] とする。 (1) 小球の速さが [m/s ] である瞬間の加速度の大きさ a [m/s ] を求めよ。 [00000000 of C

回答募集中 回答数: 0
物理 高校生

教えてください

8 816 0.92 [6] -2-10 2. 図1のような滑らかな斜面上をボールが転がる運動を考える。 ボールを点 0 から斜面に沿って上向きに10 6 m/sで転がしたところ、ポールは等加速度直線運動をし, 6.0秒後には斜面に沿って下向きに 2.0m/sの速さに なった。 次の問いに答えよ。 斜面上向きを正とする。 (1) ボールの加速度を求めよ。 -2-10 12 (2) 点0から斜面に沿って上向きに最も離れるのは何秒後か。また,そのとき点 0から何m離れているか。 (3) 6.0s後までにボールが移動した道のり(移動した距離の和)はいくらか。 6 (4) ボールが点Oに戻ってくるのは何秒後か。 7 (6) ボールが斜面をすべりきる(点Qに到達する)のに何秒かかるか。 2.0m/s ち 10m/s/ 10 P 6.0s後 24m X-kot that? 図 1 v = rotat 0=10-20 次に図2のように、同じ斜面を用いて物体Aと物体Bを運動させた。 まず, 物体Aを原点Oからx軸正の向 きに速さ10m/sで発射する。 その後 2.0秒後に物体Bを原点Oからx軸正の向きに速さ10m/s で発射した。そ の後、物体 A,Bはx軸上で衝突した。 物体 A, B は x軸上 (斜面上) では (1)で求めた加速度で運動する。 次の問いに答えよ。 vt-2/t² (G) B を投げてから [s] 後のBの位置を式で表せ。 B=1ct-tz t (7) AとBが衝突するのは, B を発射してから何秒後か求めよ。 図2 price 0 1130 C24 1120 180 15 2012 Tor トル グ

回答募集中 回答数: 0
物理 高校生

量子力学モデル(quantum mechanical model) とは何か簡単に概要だけでも教えてもらえませんか? 高校何年生でやるのかだけでも構わないので教えてください🙇‍♂️

The Bohring World of Niels Bohr In 1913WBohr proposed that electrons are arranged in concentric circular paths or orbits around the nucleus. Bohr answered in a novel way why electrons which are attracted to protons, never crash into the nucleus. He proposed that electrons in a particular path have a fixed energy. Thus they do not lose energy and crash into the nucleus. 7カje energy /eve/ of g/) e/ecro7 5 太e 7eg/O7 g7Ounの のe 70C7eus Were た5がeルfo pe. These energy levels are like rungs on a ladder, lower levels have less energy and work. The opposite is also true if an electron loses energy it falls to a lower level. Also an electron can only be found rungs of a ladder. The amount of energy gained or lost by every electron is not always the same. Unlike the rungs of a ladder, the energy levels are not evenly spaced. 4 gug/fg77 O7 ene79y 75 妨e 977Ou7た Oげ ener9y ee0eg ro 77oVe 7 e/ecfron廊O77 745 prese7t _ene/rgy 7eve/ 7O je exf jgカer oe or to make a quantum leap- The Quantum Mechanical Model Like the Bohr model, the ggg74777 776c7g77Co/ 777Oe/ leads to gugn67ze9 energy levels for an electron. However the Quantum Mechanical model does not define the exact path an electron takes around the nucleus. It is concerned with the likelihood of finding an electron in a certain position. This probability can be portrayed as a (oto sale) o @ ら oプ @ Figure 3A Classical Alomic Schematic of Carbon 党 Figure 3B New Atomic Schematic of Carbon 1 nucleus while Gtrostatc equivalents keep Envelopes separale Figure 3C New Atomic Schematic of Oxygen (Electron Envelope above page not shown) blurry cloud of negative charge (electron cloud). The cloud is most dense where the electron is likely to 人M be. ーーーーーー" 午

解決済み 回答数: 1