学年

教科

質問の種類

物理 高校生

なぜ①の式になるんですか?? 距離が違うのでイコールにならないんじゃないんですか?

120 解答 (1) 床:3mg, 壁: 2mg (2) tan O 3tan O (+1) 3 MOD (1) Ante T A R 指針 人がはしごを登っていくと,下端Dが床から受ける静止摩擦 力は大きくなる。 はしごがすべる直前には,静止摩擦力は最大摩擦力 となる。はしごが受ける力を図示し,水平,鉛直方向の力のつりあい 式、下端Dのまわりの力のモーメントのつりあいの式を立てる。 解説(1)人が点に達したとき, はしごはすべり出す直前にある。 このときはしごの下端Dが床から受ける垂直抗力をN, 静止摩擦 0 力をF, 上端Aが壁から受ける垂直抗力をRとすると, はしごが受 ける力は図のようになる。 鉛直方向の力のつりあいから, 垂直抗力 N=2mg+mg=3mg … ① B 2mg L sine N mg A F 下端Dのまわりの力のモーメントのつりあいから, 3L coso D .85 -coso 3L 2mg× coso+mg× cos0=R×Lsin0 4 L 2 2mg R= ・② h tan 2 (2) 静止摩擦力Fは,水平方向の力のつりあいから, F=R ③ 式 ② ③ から, 2mg F=R= …④ tan 4 下端Dから2mg, mg, Rの作用線におろした垂 線の長さ(うでの長さ)は, 3L cosl.1/coso. 4 はしごがすべり出す直前では,静止摩擦力は最大摩擦力となる。 はし ごと床との間の静止摩擦係数をμとすると,F=μNの関係式が成り 立つ。これに式 ①, ④を代入すると、受 Lsine である。 2mg 重心 tan =x3mg "=- 3tan0 大 UC

解決済み 回答数: 1
物理 高校生

1番の問題です。 tanθを求めるとこまでは分かったのですがそこからどうやって速さを求めたのかが分かりません。 教えてください

ここがポイント 156 円錐容器の内部で等速円運動している物体には,面からの垂直抗力と重力の2力がはたらいている。 この2力の合力が, 向心力のはたらきをしている。 この合力は、 水平方向で円の中心を向く。 具体的に 力を求めるには、 鉛直方向と水平方向に力を分解する。 鉛直方向は力のつりあいが成りたち, 水平方向 の分力は等速円運動の向心力となる。 解答 (1) 物体にはたらく垂直抗力をNとする。 垂直抗 力の鉛直成分と重力はつりあっているので Ncos0-mg=0 1 別解 N Ncos 6/ m 向心力人 INsin O また,水平方向の分力が向心力のはたらきをし 左向き ているので mg mg v2 r よって, 上の2式より m=Nsine 物体とともに回転する立場で 考えると, 垂直抗力と重力 sin v2 tan0= = cos gr ゆえにv=gtan (2) 周期の式 「T= 2mr」より (5) T=- 2лr √grtan r == -=2π gtan0 (3) (1) の結果より r= v2 gtan 遠心力の3力がつりあい、 体は静止しているように見 力のつりあいの式は EJNcose-mg=0 Nsino-m=0 注 r 「T=2xr を2倍にしたとき、 1/2倍としてはならない これより,速さを2倍にすると軌道の半径 よって(2)の結果より, rを4倍にすると周期 は4倍になる。 は2倍になる。 を変えると の値も変 ることに注意する。

解決済み 回答数: 1
物理 高校生

五番の回答が2個あるのは後を見すえてでしょうか? また、六番も分かりません

6 加速度運動 5. 方投射と自由落下等加速度直線運動〉 同時に動きだした2つの小球の衝突について考える。 図1、図 2のように、水平方向右向きに。 鉛直方向上向きにy軸をと る。時刻10 で 原点Oから小球Pをx軸の正の向きから角 (0°<8<90°)の向きに、速さ(0) で投げ出す。 ここでは 反時計回りを正とする。 重力加速度の大きさを」として、次の間 いに答えよ。 ただし、小球はxy面内でのみ運動し、空気抵抗は ないものとする。 まず。 図1のように小球を投げ出すと同時に、 小球Qを 標 (a,b)から静かに落下させた。ただし、40b>0 とする。 (1) 投げ出した小Pが小球Qと衝突するまでの時刻におけ る小球Pの座標を求めよ。 (2) 投げ出した小球Pがによらず小球Qと衝突するための tan を求めよ。 次に、 図2のように, 原点を通り軸の正の向きから角 (0°<a<90°傾けた、なめらかな斜面を設置した。 ただし, α は時計回りを正とする。 小球Qを原点Oに置き、 小球Pを投げ出 すと同時に小Qを静かにはなすと, 小球Qは斜面をすべり始め た。 小球 P h 18 a 図1 小球 Q 図2 小球 Q 小球 P 斜面 (3) すべり始めた小球Qが小球Pと衝突するまでの時刻における小球Qの座標を求めよ。 (4) 投げ出した小球Pが、によらず小球Qと衝突するための tan を求めよ。 6. <斜面への斜方投射> 図のように水平と角度 0 (0) をなす斜面上の原点O から、斜面と角度をなす方向に初連量の小 球を投射した。 原点から斜面にそって上向きにx軸を. 斜面から垂直方向上向きにy軸をとる。 斜面はなめらか で十分に長いものとする。 重力加速度の大きさを」とし、 空気抵抗はないものとする。 また、角度0とは <8+α < 21/2の関係を満たすものとする。 〔23 富山県大〕 (4) 小球が斜面と衝突する時刻を求めよ。 (5) 小球が斜面と衝突する点の原点からの距離を求めよ。 (6)距離が最大となる角度αを求めよ。 小球が斜面に対して垂直に衝突した場合について考える。 (7)角度αと8の関係式を求めよ。 (8) 小球が斜面に衝突する直前の速さをを用いて表せ。 7. 〈斜面をのぼる小球の運動> 水平な面(下面)の上に、高さんの 水平な平面(上面)が斜面でなめらか につながっている。 図に示すように x.y.y軸をとり、斜面の角度はx軸方向から見た断面 である。 下面上でy軸の正の向きに 軸とのなす角を0. として、質量 mの小球を速さで走らせた。 な お, 0 <6<90° かつ0 とし、小球は面から飛び上が 力加速度の大きさをgとし、 斜面はなめらかであるとす 次のアイに入る最も適当なものを文末の ウクに入る数式を求めよ。 (1) 斜面をのぼりだした小球は、x軸方向にはア る。 小球が斜面をのぼりきって上面に到達したとき ウy成分の大きさはエ(のぼりきる前 また、斜面をのぼり始めてから上面に到達するまでに 小球の進む方向とy軸とのなす角度を とすると, なる。 (2) 初速度の大きさを一定に保ちながら, 0, 0 さいうちは小球は上面に到達した。 しかし. 8, があ ずに下面にもどってきた。 このときのの満たす 0.0 のとき小球が斜面をのぼり始めてから再 クである。 ア イの選択肢 時刻における小球の位置のx座標, y座標を示せ。 時刻における小球の速度の成分 成分を示せ。 小球を投射した時刻をt=0 とし, 小球が斜面に衝突するまでの運動について考える。 小球にはたらく重力の成分 成分を示せ。 ① 等速度運動 ②加 ③ 加速度 -g cos の等加速度運動 ④ 加 ⑤ 加速度 α- sin 9 の等加速度運動 ⑥ 加 加速度 α- 9 tano この等加速度運動

回答募集中 回答数: 0