学年

教科

質問の種類

物理 高校生

波の分野のうなりについてです 画像の10行目からで、「2つの音源の振動数をそれぞれf1,f2〔Hz〕とすると、周期T0〔s〕の間に2つの音源から出る波の数f1T0個とf2T0個は波1個分ずれる」という部分がわかりません 必ず1個分ずれると言い切れるのはなぜなんでしょうか…?

E うなり 振動数がわずかに異なる2つのおんさを同時に鳴らすと, ウォーン, ウォーンと音の大小が周期的にくり返されて聞こえる(図39)。このよう な現象をうなりという。うなりは2つ beat の音波が重なりあうことによって生じる。 1秒当たりに生じるうなりの回数fを 図40をもとにして求めよう。 うなりが 1回生じる時間(うなりの周期) を To [s] と すると, 1秒間では 回うなりが生じ To る。したがって, f と To の関係はf= 1 To となる。また,2つの音源の振動数 をそれぞれ fi, fz [Hz] とすると,周期 To [s] の間に2つの音源から出る波の数 fiTo 個とf2T。 個は波1個分ずれるので |fiTo - fzTo| = 1 (17) よって AU B "O BU 1 うなりの回数 f = \f-f2| (18) O み 空気の圧力変化 O 44 第3編 波 同位相 図 39 おんさによるうなり 動数の等しい2つのおんさの一方 におもりをつけると、枝が少し重く なり,振動数はわずかに小さくなる。 逆位相 (18) 式を導く To > 0 であるから, (17) 式より |f₁-f₂| To=1 firo 個の波 (この図では5個) よってTo= これを f=1に代入して f=/=1fi-fal To fT。 個の波 (この図では4個) うなりの周期 To[s] 1 Tf₁-f₂l 同位相 時間 VA ●図 40 振動数がわずかに異なる2つのおんさによるうなり 合成波の振幅は,同位相で重 なるときに最大となり, 逆位相で重なるときに最小となる。 10

解決済み 回答数: 1
物理 高校生

物理の波についての問題です。 写真の④番についてなのですが、青で印をつけた所の式の意味が分からないです。なぜいきなりこの式変形になったのでしょう。夜行性なので反応早いと思います。

その波高は 5m,速さは 65km/hにもなる。 物理 基礎 STEP 3 解答編 物理 p.115~116 |220 波の重ね合わせ 次の文の「 数値を入れて文章を完成させよ。 右上図のように, ェ軸上の原点O(r=0) と点Q(z=D2L)に同位相で単振動をする波 源があり,それぞれから出される振幅 A, 振動数fの正弦波が, 工軸上を速さゅで互い に逆向きに進み, OQ間で重なった。このとき, 点P(位置x)における時刻!での波源 0からの波による変位 ypo は,次式で表される。 に数式または0 干 2L の く P Q fx V=fa Iro=A sin 2f(t-ト 20 (fe-) v f この波の波長は0である。一方, 点Pにおける時刻tでの波源Qからの波による 変位 yro は, yro= 波による変位は2つの三角関数の和で, yp= ③] と表される。このとき, 点Pにおける両波源からの波の合成 と表される。ここで、 A-B COS 2 A+B sin A + sin B =2sin を用いた。この式より, 時刻によらず変位0の 2 位置があることがわかる。v,f, Lの間に,v=fL という関係があるとすると,OQ間 にそのような位置は 個存在する。 Chapter 221 波の反射と定常波 右図のように, 媒質が.r軸 に沿って置かれており, 原点Oに波源がある。 エ=0 壁 16 波I 世所の 告器

回答募集中 回答数: 0