学年

教科

質問の種類

物理 高校生

(3)について Tc/Tbの意味を教えて欲しいです。(なぜこれが出てきたのか?という過程など…) (4)について なぜA→Dに要する時間がVsの速さでA→Eに要する時間と等しいのか教えて欲しいです。 また、これよりわかりやすい解説があるならば教えていただきたいです。🙇‍♀️

図のように,一定の速さ”で一様に流れる川に浮かぶ船 の運動を考える。 船は、静止している水においては一定の 速さ us (vs>u) で進み, また、瞬時に向きを自由に変えら れる。最初, 船は船着場 A にいる。 A から流れに平行に 下流に向かって距離 L離れた地点を B, A から流れに垂直 に距離 W 離れた地点をC, C から流れに平行に下流に離れ た地点をDとする。 船の大きさは無視できるものとする。 W (1)地点AとBを直線的に往復する時間 TB を L, us, ” を用いて表せ。 L→ (2) 船首の向きを, AC を結ぶ直線に対してある一定の角度をなすように上流向きに向 け、流れに垂直に船が進むようにして,地点AとCを直線的に往復する時間を W, us, v を用いて表せ。 (3)L=Wのとき,Tc を TB, us, o を用いて表せ。また,時間 Tc と TB のうち長いほ うを答えよ。 (4) 船首の向きを,ACを結ぶ直線に対し角度 0 (0>0) だけ上流向きに向けて地点 A から船を進めると,地点D に直線的に到着する。 その後,地点DからCに、流れに 平行に進み,地点Cに到着する。地点 A から D を経由し Cまで移動するのに要する 時間を W, US, 0, 0 を用いて表せ。 [東京都立

回答募集中 回答数: 0
物理 高校生

海底の勾配ってなんですか? 各川の堆積作用は何で決まってるんですか?

7 三角州の分類 Link [ちょう し 鳥趾状三角州 p.38 三角州, p.202 自然条件とかかわりの深い集落立地, p.264 ミシシッピ川の河口に広がる三角州(デルタ) えんご 円弧状三角州 海岸の波や流れに対する河川 の堆積作用の相対的な強さ [海底の勾配 カスプ状三角州 0 準平原 構造平野 堆積 沖積平野 (谷区平野、扉 ・洪積台 角海 ミシシッピ加 © TRIC ③ミシシッピ川河口 (アメリカ合衆国) 河川 の堆積作用がさかんで沿岸流が弱い場合は, 河道 に沿って形成される自然堤防が海側にまでのび 鳥の足跡のような形の鳥趾状三角州になる。 ←6鳥趾状三角州 例: ミシシッピ川 (ア メリカ合衆国),キュ ル川 (アゼルバイジャ ン), マッケンジー川 (カナダ) カイロ ©TRIC/NASA ↑ 4 ナイル川河口 (エジプト) 河道の移動がひ んぱんに生じる河川で, 土砂の堆積が進み, 複数 の自然堤防の間が埋積されて陸地化すると, 海岸 線が円弧状になった円弧状三角州になる。 ←7円弧状三角州 例: ナイル川 (エジプ ト), ニジェール川 (ナ イジェリア), ドナウ 川 (ルーマニア), イン ダス川 (パキスタン), おびつがわ 小櫃川(千葉県) Link 別冊ワーク.10 5 ⑤テヴェレ川河口 (イタリア) 波の侵食作用 が強い場合は, 堆積作用がさかんな本流の河口 近だけに三角州が突出し、 その両側は陸側に湾 して尖状になったカスプ状三角州になる。 せんじょう PICOECKE ところにある段丘ほ 土地の隆起や河川流 ←8カスプ状三角州 例:テヴェレ川(イタ リア) 安倍川(静岡 てんりゅう 県) 天竜川 (静岡県) 9 台地の 12台地の利用

回答募集中 回答数: 0
物理 高校生

共テ物理基礎の波の問題なんですが、振動数に√が入ってくる理由と、比の表し方がどうにも理解できません。わかる方お願いします。

27 伝わる波の速さ) (p.138) AB間の中心を押さえながら、その弦を鳴らした・・・ ABの中心が節となる定常波 解答 問1 ① リード文check 23 ●基本振動 腹が1つの定常波 間3④ 税 弦の固有振動のプロセス プロセス 0 Process プロセス 1 定常波の図をかく プロセス 2 図から波長を, 弦の長さを用いて表す 問1 図2a より m が4倍になると手 は2倍になってい る。 プロセス 3 「v=ja」, 「f= -」を用いて、必要な物理量を求 張力S める 重力mg プロセス 3 「v=fi」 より 押さえないときの振動数は fmに比例 図2a する。 f = k₁√√m (k, は比例定数)・・・① 図2bより Lが2倍 になるとは 1/12 倍Lが 4倍になるとは 1/12 倍に なる。 f1/12に比例する。 ABの中心を押さえたときの振動数は ==1 よってf'f ③ 問3 プロセス プロセス 2 図 2b 実験結果より f=(k2は比例定数)………② 押さえないときの振動数は f=k³ vm m ①.②より ✓m L ABの中心を押さえたとき、この弦につい ているおもりの質量を m' とすると, 振動数 f=k L 問2 おもりの質量を変えていないことから, 弦 の張力は変化しない。 (kは比例定数) ① は m' f'] = RY L よって, 弦を伝わる波の速さは変化しない。 2 プロセス 振動数が等しい弦が互いに共鳴するから ンター過去問演習 プロセス 2 押さえないとき ✓m k- = k √ m' L 波長は = 2L 2 AB の中心を押さえたとき m = 4m' 波長は '=L よって m: m'=4:1 ④ (閉の ■

回答募集中 回答数: 0
物理 高校生

共テ物理基礎の波の問題なんですが、振動数に√が入ってくる理由と、比の表し方がどうにも理解できません。わかる方お願いします。

27 伝わる波の速さ) (p.138) AB間の中心を押さえながら、その弦を鳴らした・・・ ABの中心が節となる定常波 解答 問1 ① リード文check 23 ●基本振動 腹が1つの定常波 間3④ 税 弦の固有振動のプロセス プロセス 0 Process プロセス 1 定常波の図をかく プロセス 2 図から波長を, 弦の長さを用いて表す 問1 図2a より m が4倍になると手 は2倍になってい る。 プロセス 3 「v=ja」, 「f= -」を用いて、必要な物理量を求 張力S める 重力mg プロセス 3 「v=fi」 より 押さえないときの振動数は fmに比例 図2a する。 f = k₁√√m (k, は比例定数)・・・① 図2bより Lが2倍 になるとは 1/12 倍Lが 4倍になるとは 1/12 倍に なる。 f1/12に比例する。 ABの中心を押さえたときの振動数は ==1 よってf'f ③ 問3 プロセス プロセス 2 図 2b 実験結果より f=(k2は比例定数)………② 押さえないときの振動数は f=k³ vm m ①.②より ✓m L ABの中心を押さえたとき、この弦につい ているおもりの質量を m' とすると, 振動数 f=k L 問2 おもりの質量を変えていないことから, 弦 の張力は変化しない。 (kは比例定数) ① は m' f'] = RY L よって, 弦を伝わる波の速さは変化しない。 2 プロセス 振動数が等しい弦が互いに共鳴するから ンター過去問演習 プロセス 2 押さえないとき ✓m k- = k √ m' L 波長は = 2L 2 AB の中心を押さえたとき m = 4m' 波長は '=L よって m: m'=4:1 ④ (閉の ■

回答募集中 回答数: 0