学年

教科

質問の種類

物理 高校生

(2)の問題がわかりません。 2枚目写真が私の回答なのですが、考え方が違うと思います。 どこが間違っているか教えていただきたいです。 なぜ経路差が1だと二分のλになるのでしょうか? よろしくお願いします🙇‍♀️

20 例題 3 音の干渉 動かし, 波形の振幅の変化を調べよう。 15 図のように、 2つのスピーカー A, B が, 同位相 で振動数 1.7 × 102Hzの音を出している。 音の速 さを 3.4 × 102m/s とする。 ■ A 3.0m (1)音の波長 [m] を求めよ。 B (2) 点Pは,音が強めあう点か, 弱めあう点か。 4.0m 指針 (2) 2つのスピーカーは同位相の音を出すので,距離の差 AP-BP| が 「波長の整数倍」 のときは強めあう点、 「波長の整数倍+半波長」 のときは弱めあう点になる。 解 (1) 「v=fi」 (p.141 (1) 式) より 3.4 × 102 = (1.7 × 102 ) × à よって 1=2.0m (2) 問題の図より BP = 4.0m また, 三平方の定理より AP = √3.02 + 4.0° = 5.0m よって |AP-BP|=1.0m=14121 ゆえに、点Pでは,スピーカー A, B からの距離の差が 「波長の整数倍 +半波長」になり、 音波が逆位相で重なりあうので、 弱めあう点となる。 類題 3 図のように、2つのスピーカー A,Bが, 逆位相 A T で振動数 8.5×10°Hzの音を出している。 音の速 1.0m B さを3.4×10m/s とする。 点Pは, 音が強めあ...... 2.4m

解決済み 回答数: 1
物理 高校生

(2)で9.8t=20を計算してt=2.04816...で有効数字から2.0sになることはいいんですが、(3)で2.04を使って計算していて今回みたいに割り切れなくて次の問題で使うって時どこまで値をとるんですか? 教えてください わかりにくかったら申し訳ないです

① 基本例題7 斜方投射 物理 高 基本問題 41,42 水平な地面から, 水平とのなす角が30° の向きに 速さ 40m/sで小球を打ち上げた。 図のようにx軸, 軸をとり、重力加速度の大きさを 9.8m/s2 として 次の各問に答えよ。を求め、 y 40m/s 30° 地面 x (1) 打ち上げてから0.20s 後の速度の成分 成分と, 位置のx座標, y 座標を求めよ。 (2) 打ち上げてから最高点に達するまでの時間を求めよ。 (3) 地面に達したときの水平到達距離を求めよ。 指針 小球は, x方向には速さ 40cos 30% m/sの等速直線運動をし, 夕方向には初速度 40sin 30°m/s の鉛直投げ上げと同じ運動をする。 最高点に達したとき, 小球の速度の鉛直成分は であり, 打ち上げてから地面に達するまでの時間 は、最高点に達するまでの時間の2倍となる。 「解説」 (1) 速度のx成分,成分は, √3 ひx=40cos30°=40x =20√3 2 =20×1.73=34.6m/s 35m/s Min v=vosino-gt=40sin30°-9.8×0.20 =40x- 12-1.96=18.0m/s 18m/s 位置のx座標, y 座標は, d x=vxt=34.6×0.20=6.92m 6.9m y=vesindt- 2 912 ×9.8×0.202 =40sin30°×0.20-12× =3.80m 3.8m (2) 求める時間は,v=0 となるときであり, v=vosine-gt」から, 0=40sin30°-9.8xt t=2.04s 2.0s (3) 水平方向には等速直線運動をし、地面に達 するまでに (2) で求めた時間の2倍かかるので、 x=vxt=34.6×(2.04×2)=141m 1.4×10m

解決済み 回答数: 1
物理 高校生

問2 の弾性力による位置エネの式の意味がわかりません。よろしくおねがいします

15 問1 問2 ⑥ ドーは保存されるので から水平面上を運動して 問1 図aのように、上のばねは だけ伸び、下のばねは だけ縮んでいる。 よって 小球にはたらく力は、大きさ から点に達する 存されるので、重力に 水平面とすると の上のばねが上向きに引く力、 大きさ fi-k(l-h) 1-M の下のばねが上向きに押す力と 大きさ mgの下向きの重力であ る。 したがって, 小球にはたら 力のつりあいから 12 h mg 15 面にする直前の小 k(l-h)+k(l-h)-mg=0 であるので にする。 地球上での h=l- mg 2k ギーは、 この力学的エネル の2つの運動エネ 以上より,正しいものは ① 問2 小球の高さが1になったとき, ばねの長さの合 計がyなので,図bのように, 上のばねはy-21 だ け伸び、下のばねは自然の長さとなっている。 よっ て, 小球にはたらく力は,大きさ fi=k(y-21) の上のばねが上向きに引く力と大 きさmgの下向きの重力である。 したがって, 小球にはたらく力の つりあいから k(y-21)-mg=0 であるので 0000000 y= mg_ k +21 た y-21 ト mg 重力加速度の 動摩擦力は物 ある。 物体の初 までの距離を! レギーの変化が 2μg は24倍に 2倍になる。 ③となる。 また, 手がした仕事 W は ば ねとおもりからなる系の力学的エ ネルギーの変化であり、図aと図 bの状態の小球の重力による位置 エネルギーの変化 40 と弾性 力による位置エネルギー(弾性エ 図 ネルギー)の変化 40th の和に等しい。 よって W-40 +40 ばね =mg(1-n+1/24(y-212-12(1m)×2} =mg(1-h)+1/21k(y-21)-(1ール)。 以上より,正しいものは ⑥。

解決済み 回答数: 1
物理 高校生

問62の(2)(3) 問63の(1) は なぜ2乗が答えなんですか 例えば、問62の(2)は980Jじゃダメなんですか

62 仕事の原理数 p.72 水平面と30°の角をなすなめらかな斜面 にそって質量20kgの物体をゆっくり引き 上げる。 重力加速度の大きさを 9.8m/s² とする。 130° (1) 引き上げるために必要な力の大きさ F][N] を求めよ。 (2) 斜面にそって10m引き上げるのに必要な仕事 W [J] を求めよ。 (3) この物体を、 同じ高さまで斜面を利用せず鉛直上方に引き上げ るのに必要な仕事 W2 [J] を求めよ。 (1) 物体を引き上げる力は重力の斜面にそった成分とつりあってい る。 直角三角形の辺の長さの比より F (20×9.8)=1:2 2F =196 よってF,=98N (2) 斜面にそった力は 98N なので, 「W=Fx」 より ☆ W,=98×10=9.8×10°J 162 (1) 98 N (2) 9.8×10°J (3) 9.8×10°J 斜面を使って物体を引き上げる と力は小さくてすむが, 引き上 げる距離が長くなり、 鉛直上方 に引き上げる仕事と等しくなる。 860 F 30° 30° 30° 20×9.8N (3) 斜面にそって10m 引き上げたときの高さは、直角三角形の 辺の長さの比より (2) 10m h① h: 10=1:2 30V よってh=5.0m 物体を鉛直上方に引き上げるために必要な力は重力とつり あっているので20×9.8N となる。 「W=Fx」 より W=Fzh=(20×9.8)×5.0=9.8×10°J 63 仕事率 数 p.73 63 次の各々の場合の仕事率 P[W] を求めよ。 (1) 40W (1) 質量 25kgのトランクを水平方向に20N の力で引いて, 力の向 きに10m 動かすのに 5.0秒かかった。 (2) 1.8×10'W (2) 揚水ポンプを使って, 高さ9.0mのタンクに水 6.0×10kgをく・・ み上げるのに 49 分かかった。 重力加速度の大きさを 9.8m/s^ とする。 仕事率は1秒当たりの仕事の量 なので、 時間の単位を秒になお して計算する。 (1) トランクの質量は仕事に関係しないので、 仕事率の式 [P= = -」 より W Fx t t 20×10 P= -=40W 5.0 (2)49分は49×60秒となる。 仕事率の式 [P= =」より P= (6.0×10)×9.8×9.0 49×60 =1.8×10W 第3章 仕事と力学的エネルギー 41

解決済み 回答数: 1
物理 高校生

なにがどうなってこの式になったのか分かりません。

I わる、 以下の空欄にあてはまるものを各解答群から選び, マーク解答用 紙の該当欄にマークせよ。 図1のように, z軸の正の向きに一様であるが時間とともに変化する磁 場をかける。この中に,長さLで絶縁体の細い糸の一方の端を磁場中の ある点0に固定し,もう一方の端に質量 M, 正の電荷 +α を持つ粒子を つなぐ。 時刻 t <0 のある時刻に. 糸が磁場と垂直に張った状態で,粒子 を磁場と糸に垂直な方向に初速で打ち出した。 粒子は磁場と垂直な平 面上を, 2軸の正の方から見て時計まわりに半径Lで円運動した。 粒子 の円に沿った運動については,粒子の運動の向きを正の向きとする。 円周 率をとし,粒子にはたらく重力は無視してよい。 +9 Bo 図1 B Bo ( 1 + kt ) t 問1時刻t<0では一様磁場の磁束密度は一定値であった。 このとき, Boであった。このとき, 糸がたるまずに等速円運動することのできる粒子の速さの最小値を Vo, 角速度を wo とすると, vo は (1) と表される。たとえば, Bo=1.0T として,回転している粒子が陽子と同じ質量 M=1.7×107kg と電荷 g=1.6×10-1Cを持つ場合, 角速度 wo は、 (2) rad/s となる。 ただ て,粒子の速さは光速よりも十分に小さいものとする。 時刻 t < 0 で粒 子に初速v=3v を与え, t>0では磁束密度をB=Bo(1+kt) (kは正 ω

解決済み 回答数: 1