学年

教科

質問の種類

物理 高校生

⑶の問題でなんでマーカーの部分の式をかけるのか教えてほしいです!!!

し 秒 [15] 【センターより】 音波に関する次の文章を読み、下の問い ((1)~(3)) に答えよ。 音のドップラー効果について考える。 音源、観測者。 反射板はすべて一直線上に位置し ているものとし、空気中の音の速さはVとする。また、風は吹いていないものとする。 (1)次の文章中の空アイに入れる語句と式の組合せとして最も適当なもの を,下の①~④のうちから1つ選べ。 図1のように、静止している振動数の音源へ向かって、観測者が速さで移動 している。このとき、観測者に聞こえる音の振動数はア音源から観測者へ向か う音波の波長はイである。 音源 ア ①よりも小さく ②よりも小さく イ V-v fi V チェ V2 よりも小さく J (V+v)fi V-v ④ と等しく fi V @ と等しく V2 と等しく (V+v)fi V-v 0よりも大きく f₁ V よりも大きく f₁ V2 よりも大きく 観測者 (V+v)fi (2) 図2のように, 静止している観測者へ向かって, 振動数の音源が速さで移動 している。 音源から観測者へ向かう音波の波長を表す式として正しいものを、下の ①~⑤のうちから1つ選べ。 =2 ① √2 観測者 図 2 V-v [③] V+v V² ④ (V-v\/ 音源 f2 V² (V+0)f2 (3) 図3のように, 静止している振動数の音源へ向かって, 反射板を速さで動か した。 音源の背後で静止している観測者は, 反射板で反射した音を聞いた。 その音の 振動数はf であった。 反射板の速さを表す式として正しいものを,下の①~⑧ のうちから1つ選べ。 3 観測者 音源 反射板 ① 113-114 ⑤ fs-fiy fath V 図 3 ② fatfav③ チューナ ⑥ fs ④ h-hy チュ 近

未解決 回答数: 1
物理 高校生

明治大学の過去問です。 1枚目の11と12がわかりません。3枚目は12の選択肢です。どなたか教えていただきたいです 11は-2Q/3、12はEが正解です

Ⓒ2√5 8 の解答群 √√2 2 L V6 Ⓡ L 2 〔II〕 次の文中の C [® F に与えた電気量は 描いた図は 12 √3 2 √7. 2 © L ©L G√2L 9 から 16 から一つ選び,解答用紙の所定の欄にその記号をマークせよ。 ⒸVEL に最も適するものをそれぞれの解答群 真空中に,点Oを中心とする半径R 〔m〕 の不導体球Iがある。この球の内部 は一様に正に帯電しており, 全体で電気量Q〔C〕をもつ。 クーロンの法則の比 例定数をk [N・m²/C2] とする。 (1----) 38 @ (^-^) MO 0 1. 図1のように、点Oを中心とする不導体球Ⅰより大きな半径r 〔m〕 の球面 Sを考える。電場(電界)の強さがE[N/C〕 のとき,電場に垂直な面を単位 面積あたりE本の電気力線が貫くと定めると, 球面Sを貫く電気力線の本 数Nは, S内に含まれる電気量を用いて N = 9 である。 球面S上の inpony 電場は面に垂直であるので, S上の電場の強さは は 〔N/C〕となる。 このように,帯電体の外側の電場は,帯電体を囲む曲面の内部にある電気量 4 AV で定まり、点Oに同じ電気量をもつ点電荷があるとみなすことができる。 この不導体球Iを,図2のように点Oを中心とする中空の導体球殻ⅡIで囲 10 んだ。導体球殻 ⅡIに電荷を与えて帯電させると、導体球殻ⅡIの外側の電場 Q は、点Oに電気量 200 の点電荷があるときの電場と等しくなった。導体球殻IⅡI 3 11 である。また,不導体球Iの外側の電気力線を である。 Bように、下痢止 た点での単板 と点0での電 ただし、電力の基準は無

回答募集中 回答数: 0
物理 高校生

(3)の問題 質量数とアボガドロ数を用いた計算のしかたがわかりません 僕のノートのように計算しては行けないのですか?

反応の前後で減少した量を GM とすると、 JM (反応) - 反応後の質量) AM= (26.9744+1,0087) -(23.9849+4.0015) =-3.3×10 u (2) (1) JMが負となったので、反応後の質量 leV=1.60×10-19Jなので, 4.92×10-13 1.60×10-19 指針 反応前後での質量の減少を⊿M とす ると, 4M2 のエネルギーが放出される。 (3) では, Uの原子数を求め, エネルギーを計算する。 (1) 反応前の質量の和は, 234.9935+1.0087=236.0022u 反応後の質量の和は, 139.8918+92.8930+3×1.0087=235.8109u =3.07 x 10°eV=3.07MeV 3.1 MeV のエネルギーが吸収された。 基本例題88 ウランの核分裂 ウランの原子核に中性子 in が衝突し, 次のような核分裂がおこった。 U÷n →→→→ ¹8Xe+Sr+3n 表には、各原子核と中性子の質量を示す。 1u=1.66×10-27kg, 真空中の光速を3.00×10°m/s, アボガドロ定数を6.02×1023/mol とする。 質量の減少は 236.0022-235.8109-0.1913 u (2) 反応によって減少した質量をkg に換算する。 AM = 0.1913×(1.66×10-27) = 3.175×10-28kg 基本問題 606,607,608,609 in 38Sr 1404 (1) この反応における質量の減少は何uか。 (2) Uの原子核1個あたりから放出されるエネルギーは何Jか。 (3) 1.00gのUがすべて核分裂をしたとき, 放出されるエネルギーは何Jか。 1.00 235 235T 1.0087 u 92.8930u 139.8918u 234.9935 u 放出されたエネルギーEは,E=⊿Mc² から . E=3.175×10-28 × ( 300×108) 2 = 2.857×10- ….. ① 2.86×10-1J (3) 1.00gの25Uの原子数は、質量数が235 な ので, x (6.02×1023) = 2.561×1021 求めるエネルギーE' は, ①の値から. E'=(2,857×10-1)×(2.561×1021) =7.316×10¹0 J 7.32×10¹0 J

回答募集中 回答数: 0
物理 高校生

物理基礎です。最後の答えがなぜ0.9ではなく0.90になるのか教えてください🙏

基本例題36 熱量の保存 周囲を断熱材で囲んだ熱量計に, 2.5×102g の水を入れると,全体の温度が23℃となった。 この中に,100℃に熱した質量 2.0×102gのア ルミニウム球を入れ, 静かにかき混ぜたところ. 全体の温度が 34℃ となった。 アルミニウムの銅の容器 比熱はいくらか。ただし, 水の比熱を 4.2 水 J/ (g・K), 銅の容器と銅のかき混ぜ棒をあわせ た熱容量を30J/K とする。 指針 熱平衡に達したとき, 高温のアルミ ニウム球が失った熱量は, 低温の水, 容器, かき 混ぜ棒がそれぞれ得た熱量の和に等しい。 ■解説 アルミニウム球が失った熱量を Q [J],その比熱をc[J/g-K)] とすると, 「Q=mcAT」 の式から, Q. = (2.0×10²) xcx (100-34)=13200c[J] 一方、水が得た熱量を Q2 〔J〕, 容器とかき混ぜ棒 が得た熱量を Q〔J〕 とする。 Q2 は, 「Q=mcAT] の式から, Q2=(2.5×10%) ×4.2×(34-23)=11550J 温度計 熱量計 解説動画 基本問題 268,269,270 銅のかき混ぜ棒 ・断熱材 アルミニウム球 第Ⅲ章 Q3 は,「Q=CAT」 の式から, Q3=30×(34-23)=330J 熱量の保存から, Q1=Q2+Q3 の関係が成り立つ。 13200c=11550 +330 c=0.90J/(g・K) SKO*.00S Point 熱量の保存では、次の関係を利用して 式を立てるとよい。 (高温の物体が失った熱量の和) = (低温の物体が得た熱量の和) |熱力学

解決済み 回答数: 1