学年

教科

質問の種類

物理 高校生

この問題の4番について質問です。振動数はおもりの重さによっては変わらないとあるのですが,なぜですか? おもりの数が多いほど,弦が張ることになるので,音が高くなると思ってました。(ギターみたいな感じで)

(3) Hz である。 また, a=35cm をそのままにし, おもりを4倍に増やし たとき, 弦は共振しなくなった。 弦を再び共振させるには,Bを 少なくとも (4) cm 右に移動しなければならない。 64 弦の共振 全体の長さが120cm 質量 1.8g の弦の右端に滑車を通して質量 6 kgのおもりをつるし,振動源Sによって弦を振動させる。 この弦は, コマBを動かすことにより任意の一点を固定できる。 弦の張力はどこ も同じで,振動する AB間の距離をα, 重力加速度を10m/s2とする。 問1 コマBを適当に動かすと, a= 30cmで弦が共振する。 さらにB を右に移動していくと, a=35cm で再び弦が共振する。 したがっ て,弦を伝わる横波の波長は (1) cmであり,このときのAB 間の腹の数は (2) 1個である。 またSの振動数は (1) 振動数 fと波の速さが変わっていないの で、波長も変わっていない。 Aが節で今こ とに節があるから, Aから30cmの範囲の定 常波の様子は同じこと。 そこで,Bを右へ だけ移せば再び共振する。よって .. 1 = 10 cm 5cm ごとに腹が1つずつあるから 35÷5=7個 B =35-30 2 2 2 (2) 2 (3)密度は p = 1.8×10-3 120×10-2 B< [kg] と [m〕 を - = 1.5×10-3 kg/m 用いること v = mg P 6 × 10 V1.5×10-3=200m/s 2 もとの弦と同じ材質 同じ長さで, 直径が2倍の弦に張り替え て, αを30cmにし, おもりの質量を6kgに戻す。 このとき弦は 共振し, AB間の腹の数は (5) 個となる。 また, AB間の腹の 数を3個とするには, Sの振動数を (6) 200 v=fa より - f === 10 × 10-2 = 2000Hz (4) はじめはVP Img =fx.......① Hz とすればよい。 mを4倍にしたときの波長を とすると,fは< ①を見て,m を4 倍にすると A B 変わっていないから V p 4mg =fv.......② 2倍になると即断 したい。 S 中にス ② より 2= =24=21=20cm ① 1 (上智大) ・B' Level (1)~(4)★ (5),(6)★ Point & Hint 隔は (1) (2) 弦が共振するのは, 両端が節となる定常波ができるとき。 節と節の間 2 だから、弦の長さが1の整数倍に等しいとき,共振が起こる。 弦の長さが4=10cmの整数倍のとき共振するから、35cmより大き い次の値としては 40cm。よって,5cm 動かせばよい。 A 2 (5)直径を2倍にすると, 断面積が4倍になる から、密度も4倍になる。 波長を入とす ①からを4倍にす ③れば入は1/2倍と即 mg=fie ......③ 断できる。 ると V 40 この問題のような状況では,Sはおもりの重力 mg に より1=4 ∴ A2 = =5cm 2 12= cm ごとにあるから 30÷2=12個 は v [m/s] はv= (3) 弦の張力をS〔N〕, 線密度をp 〔kg/m〕 とすると, 弦を伝わる横波の速さ 等しい。

解決済み 回答数: 1
物理 高校生

(3)はどうして赤い字の考え方だとダメなんですか?

Ⅰ 次の文章の空欄にあてはまる数式, 図, または文章を解答群の中から選び, マーク 解答用紙の所定の場所にマークしなさい。(34点) y 0 10 m x 図1 水平方向にx軸,鉛直上向きに軸をとる。このxy面内を,大きさが無視できる [m] r 小球が運動する。 小球の質量をm[kg] とし,重力加速度の大きさをg[m/s] とする。 ひもの一端が図1の原点0に固定されていて, ひもにつながった小球が,原点0か 一定の距離 [m] を保って円運動をしている。 ひもに太さや重さはなく,空気抵抗 はないものとする。原点からみた小球の位置の方向と鉛直下向きの方向のなす角 を 0 [rad] とする。小球の速さは9によって変化し,(0) [m/s] とおく。特に, 0 = 0 における小球の速さ(0) をCMと書くことにする。小球は0の増加する方向に運動 している。 力学的エネルギー保存の法則を使うと, (1) という関係が成り立つ。 小球には重力と, ひもから受ける張力 T がはたらいている。 それらの合力のうち、 ひもに沿った方向の成分は, 向心力でなければならない。 向心力はm, v(0)に より与えられるが,その関係式は円運動が等速でなくても成り立つ。この事実を使う と、張力はT= (2) [N] と表される。 ひもがたるまずに円運動を続けるには,

解決済み 回答数: 1
物理 高校生

(3)のどうしてmが2mになるんじゃなくてKが2kになるのか分かりません。普通に考えて重さ2倍にならないからkが2倍ですか?? あと、(3)のx=a/2のときのtなんですが、私の解き方のどこがダメなのか教えて欲しいです🙇🏻‍♀️答えが合わないんです😭3枚目です。 よろしくお... 続きを読む

必解 52. 2本のばねによる単振動〉 A 00000 P 図のように、なめらかな水平面上に質量mの物体Pが同 じばね定数をもった2つのばね A,Bとばねが自然の長さ にある状態でつながっている。 水平面上右向きにx軸をとり, このときの物体Pの位置をx座標の原点とする。 物体PをばねAのほうへ原点Oよりαだ けずらしてからはなす。 このとき物体Pは単振動する。単振動は等速円運動のx軸上への正 射影の運動であるといえる。時刻 t=0において, 物体Pはちょうどx座標の原点Oを正の 向きに向かって通過した。 ばねの質量はないものとして、次の問いに答えよ。 (1) 任意の時刻における物体Pの位置xおよび速度vを,等速円運動の角速度を用いて 表せ。 (2) 任意の時刻において物体Pが位置xにあるときの加速度αを, ωとxを用いて表せ。 また, 2つのばねAとBから受ける力Fを, kとxを用いて表せ。 (3) 物体Pがx=α に達してから, 初めて原点Oを通過するまでの時間 to と, 初めて x=. 1 =1aを通過するまでの時間を,kmを用いて表せ。 (4) 物体Pの運動エネルギーKの最大値とそのときの位置, およびばねの弾性力による物体 Pの位置エネルギーUの最大値とそのときの位置を表せ。 ただし, wやTを用いないこと。 (5) 物体Pが単振動しているときの速度と位置xの関係を求め, vを縦軸に, xを横軸にと ってグラフに示せ。このとき座標軸との交点を, a, k および を用いて表せ。また,物 [香川大 改 体Pが時間とともに図上をたどる向きを矢印で表せ。

解決済み 回答数: 1