学年

教科

質問の種類

物理 高校生

問5について ❶W+mgv"sinθ=Pとなるのは何故か ❷mgv"sinθは何を表しているのか 以上のことを教えていただけると嬉しいです🙇‍♀️🙇‍♀️

3 (配点33点) 図1のように,鉛直上向きで磁束密度の大きさがBの一様な磁場中に、2本のなめ らかな導体レール X Y が間隔で平行に置かれている。2本のレールの左側は水平で 同一水平面内にあり、途中から水平面となす角が9となるように傾斜している。 水平 部分の左端には,抵抗値R の抵抗 R, 切り替えスイッチ S,起電力 E の電池Eが接続 されている。 レール間には,長さ抵抗値R, 質量mの金属棒PP' がレールに垂直 に設置されている。 金属棒PP' は, レールと垂直な姿勢を保ったまま, レールから外 れることなくなめらかに動くことができる。 抵抗Rおよび金属棒PP' 以外の電気抵抗 は無視でき,また, 電流が作る磁場の影響も無視できるものとする。 重力加速度の大き さをg として,以下の問に答えよ。 R P [CL] Yt P' R, m B レール Y レール X 図 1 0 切り替えスイッチSをaにつなぎ, レールの水平部分で金属棒PP'に右向きの初速 度v を与えたところ,やがて PP'はレールの傾斜部分に達することなく, 水平部分で 静止した。 -37- 0 問金属棒PP' の速さがひとなったときを考える。このとき、金属棒PP' を P'′ か らPの向きに流れる電流の大きさをIとする。 (1) 金属棒PP' に生じる誘導起電力の大きさを, L, B, ” を用いて表せ。 VBl (2) 抵抗Rと金属棒PP' からなる閉回路について, キルヒホッフの第2法則を表 す式を書け。 R, I, L, B, v を用いて表せ。 VBl=2RI (3) 金属棒 PP' の運動方程式を書け。 ただし, PP' の加速度は右向きにαとし, a, I, l, B を用いて表せ。 ma = -IBl (4) 加速度αを, m, R, l, B, v を用いて表せ。 VBl VB²l² a = - VBR XBlx m [= 20 2R 2km 問2 金属棒PP' が動き出してから静止するまでの間に, 抵抗 R で発生したジュール 熱を求めよ。 mo² 次に, 切り替えスイッチSをbに接続し, 金属棒PP' をレールの水平部分で静かに 放す。 このとき, 金属棒 PP' は傾斜部分に達する前に一定の速さとなり, その後レー ルから離れることなく傾斜部分を運動するようになった。 問3 金属棒PP' の水平部分での一定の速さを求めよ。 = 問4 傾斜部分を運動し, 金属棒 PP' の速さがvとなったとき, PP' の加速度を求めよ。 ただし, 加速度は斜面に沿って下向きを正の向きとする。 問5 やがて金属棒 PP' は傾斜部分で一定の速さとなる。このときの電池の供給電力 をW, 抵抗 R と 金属棒PP' での消費電力の和をPとする。 一定となった速さを W, P, m, g, 0 を用いて表せ。 -38-

回答募集中 回答数: 0
物理 高校生

問5について ❶W+mgv"sinθ=Pとなるのは何故か ❷mgv"sinθは何を表しているのか 以上のことを教えていただけると嬉しいです🙇‍♀️🙇‍♀️

3 (配点33点) 図1のように,鉛直上向きで磁束密度の大きさがBの一様な磁場中に、2本のなめ らかな導体レール X, Y が間隔で平行に置かれている。 2本のレールの左側は水平で 同一水平面内にあり、途中から水平面となす角が0となるように傾斜している。 水平 部分の左端には, 抵抗値R の抵抗 R, 切り替えスイッチ S,起電力 E の電池E が接続 されている。 レール間には,長さ抵抗値 R, 質量mの金属棒PP' がレールに垂直 に設置されている。 金属棒 PP' は, レールと垂直な姿勢を保ったまま, レールから外 れることなくなめらかに動くことができる。 抵抗Rおよび金属棒 PP' 以外の電気抵抗 は無視でき,また, 電流が作る磁場の影響も無視できるものとする。 重力加速度の大き さをgとして、以下の問に答えよ。 a R b E E [OR] とも P P' R, m B レール Y CH レール X 図1 2 01 切り替えスイッチSをaにつなぎ, レールの水平部分で金属棒PP'に右向きの初速 度vo を与えたところ,やがて PP' はレールの傾斜部分に達することなく, 水平部分で 静止した。 2m1 問1 金属棒PP' の速さがとなったときを考える。このとき、金属棒PP' を P' か らPの向きに流れる電流の大きさをIとする。 (1) 金属棒PP' に生じる誘導起電力の大きさを, 4, B, v を用いて表せ。 VBl (2) 抵抗 R と金属棒 PP' からなる閉回路について, キルヒホッフの第2法則を表 す式を書け。 R, I, L, B, v を用いて表せ。 VBL = 2RI (3) 金属棒 PP' の運動方程式を書け。 ただし, PP' の加速度は右向きにαとし, m, a, Ⅰ l, B を用いて表せ。 ma = - IB l (4) 加速度αを, m, R, L, B, を用いて表せ。 _VBl VB22 a=-VBLXBlxmm 20 2R 2km 問2 金属棒PP' が動き出してから静止するまでの間に、 抵抗 R で発生したジュール 熱を求めよ。 2 /mao² 次に, 切り替えスイッチSをbに接続し, 金属棒PP' をレールの水平部分で静かに 放す。 このとき, 金属棒PP' は傾斜部分に達する前に一定の速さとなり,その後レー ルから離れることなく傾斜部分を運動するようになった。 問3 金属棒PP' の水平部分での一定の速さを求めよ。 F 問4 傾斜部分を運動し, 金属棒PP' の速さがvとなったとき, PP' の加速度を求めよ。 ただし, 加速度は斜面に沿って下向きを正の向きとする。 問5 やがて金属棒PP' は傾斜部分で一定の速さとなる。このときの電池の供給電力 をW, 抵抗 R と 金属棒PP' での消費電力の和をPとする。 一定となった速さを、 W, P, m, g, 0を用いて表せ。 - 38-

回答募集中 回答数: 0
物理 高校生

2-5までの問題を教えて頂きたいです。問題量が多く申し訳ありません🙇‍♀️

35 着目物体の選び方 ② 次の文を読んで . | に適した式をそれぞれ記せ。 質量がMの台車1とM2の台車2がある。 台車1は水平な床の上に置かれてなめらかに 動き、その水平な上面ABの上に質量mの 箱がのっている。 箱とAB面の間には摩擦力 (静止摩擦係数μ)がはたらく。 箱と台車2は, 図に示されたように,なめらかに回転する滑 車Eを通じて一定の長さの糸で連結されてい る。 台車2は,台車1の鉛直な壁面BCに接してなめらかに動く。 滑車と糸の質量は無 視してよいものとする。 台車1の鉛直な壁面 AD を押す水平方向の一定な力をFとし, 重力加速度の大きさ する 一定な力 F A D 箱 TTL 台車1 M₁ B E M2 台車2 を C S (1) 最初に F=0 で, 台車 1, 台車 2. 箱がともに静止した状態を考える。 このとき箱に はたらいている力は、鉛直方向の重力と, AB面に垂直な方向の抗力(イ)糸の張 力, AB面に沿った左向きの摩擦力 (ロ) である。 また. 箱が滑りださないための 条件式は, で与えられる。 (2)次に力FをAD面にはたらかせて, 台車1 を一定の加速度で走らせたところ, 台 車2と箱はともに, 台車1に対して静止した状態を保ち続けた。 このときの台車1の 加速度は である。 また, 箱にはたらいている力は,重力と、張力 T= (ホ). 垂直抗力 R, 摩擦力 S= () である。 ここで摩擦力Sは, 左向きを正とする。 一方, 台車1と台車2の間には, 水平方向のカナ= (ト) がはたらいている。 (3) 設問(2)において, 台車1の水平方向の加速度α と, 台車1が床から受ける鉛直方向 の抗力Hとを質量M, および種々の力 F. T. R. S.fを用いて表すと, a= H=(リ) となる。 (4) 設問(2)の運動は.力Fがある値 (ヌ) 以下の場合に可能であるが,この値をこえる 場合には、箱は AB面上に静止することができず, AB面上をすべる。 (5) 箱とAB面上の間に摩擦がない場合でも,適当な大きさの力F=ル |をはたらか せると,設問 (2)と同様の運動 (すなわち, 台車2と箱がともに台車1に対して静止し た状態を保つ運動) が可能である。 〈京都大〉 第1編 力学

回答募集中 回答数: 0
物理 高校生

緑のマーカーで引いているのがテストで間違えたところですべて分かりやすく解き方と解説お願いします🙇‍♀️ 今日中に答えてくれると嬉しいです!!! 宜しくお願いします!!!

p²-v₁² = ( 4 【選択肢】 (ア) votax いものや、不正をした (4) 3.72x106-2.5x105 37.2×105-2.5×101 12.5 1年物理基礎 1 文字,ox,a, を使って、以下の加速度運動の3つの公式をすべて書きたい。 次の文中の (①)~( に当てはまる文字式を,以下の選択肢 (ア) (カ)のうちから1つずつ選び記号で答えよ。 1つめの公式は、セー (① (3) となる。 (2) 5.1+3.56 =8,66÷8.7 右向きに 2.0 いないものは受け付 34.73.47×10 3.5 図は ラフの接線である。 次の各問に答えよ。 Tox soubun in 16.0-40 4,0-2,0 (イ) Dotat (15) vot+at² (I) vo+at² (オ) 2at (カ) 2ax 以下の例にならって、有効数字の桁数に注意して、次の(1)~(5)の測定値を計算せよ。 足し算引き算) の有効数字】 計算結果を、測定値の末位が最も高い数字に合わせて四捨五入します (991) 23.45+5.6=29.05 29.1 ko 5.0 9.0 6.0m15 で,2つめの公式は、y= (1) 2.6+1.6 (3) 8.5+4.5 = 13.0 (4) 4.20.6 = 3.6 42 3 以下の例にならって、有効数字の桁数に注意して,次の(1)~(5)の測定値を計算せよ。 (1) 3.2x102+2.5x102 (2) 4.75x 10³ +2.7x 10¹ (3) 5.1×10^-2.4x 10 (5) (6.0×10)×(2.5x102) 5 左向きにも (1) 時刻 20sから4.0s の間の、物体の平均の速度はいくらか。 (2) 時刻 2.0sにおける瞬間の速度はいくらか。 b 12.0 2,0 12,0 想文コンクールに応 。。 = 6.0 から 5.0t….30 (55) (②)で、3つめの公式は、 の表紙をつけて提出 4.75 -20=10+5.00 -5.00-10+20 -5.00=30500y9.0 to bo やか課題考査ⅡI 45 6.0 30 15,00 15×10. x[m]と時刻 [s)との関係を表している。 図中の直線は、 時刻 20sにおけるグ 軸上を運動している物体の位置 4,75 27 31.05 2 x [m) ↑ 16.0 12.0 9.0 (+)31-75×10² 4.0 1.01 0 5枚(1 3.175×100 0.76 314 4 (5) 4.20.76 = 3.4434 Vi Vo+at V1.0.0,50 2,0 1,0410 2.0 品 5 次の各設問に答えよ。 ただし, ベクトル量の答え方に注意せよ。 --+(214-0) (43,910) (1) 一定の速さ5.0m/sで直線上を走るとき, 9.0s間に進む距離は何mか。 9.0-40 32:50 (2) 静水の場合に速さ5.0m/sで進む船が, 速さ 1.0m/sで流れる川を下流から上流に向かって進んでいる。 岸から見た船の速度はいくらか。 (3) 直線上を右向きに速さ1.0m/sで歩いているA君から, 左向きに速さ5.0m/sで走っているB君を見たときの相対速度 10mls を求めよ。 神速度(Vo) -5.0-(+10) Vo = -5.0-1.0 = -6.0% 左向きに 6.0m/s 6.0m² V (4) 直線上を右向きに速さ10m/sで進んでいた物体が、一定の加速度の運動を始めて、 5.0s後に左向きに速さ20m/sと なった。 この間の加速度を求めよ。 Vo Dr 七 ↓ (5) 物体がx軸上を初速度1.0m/s, 一定の加速度 0.50m/s² 2.0s間運動すると、速度はいくらになるか。 符号を付け て答えよ。 12.7 (40問) 「6 図は、 Aは原点 ただし, 1 1 2 3 4 t(s) (1) グ (2) 小 (3) 時 小 の (4) (5)

回答募集中 回答数: 0
物理 高校生

この問題が解説読んでもわかりません なぜ⑤ではダメなのでしょうか

さらに,Bさんは、図4のように、質量がMで、仰角が0である斜面をもつ三 角台と,質量 m の小物体を用意し,以下の【実験2】を行った。 mglsin=12/21w28/1/2mv2 0 E m 小物体 Usint. M $250 三角台 図 4 V₁ + V = 0 mu + MV = 0 [④] 【実験2】 三角台を水平な床に置いて手で支え, 三角台の斜面上に小物体を静止さ せる。 小物体と三角台から同時に手を放したところ, これらは運動を始め いた。 0= max MX Coso 物理 床 小物体が斜面上を、斜面に沿った向きに長さℓだけすべりおりたときの小物体の 三角台に対する速さはvであった。 床に平行で,図4の右向きを正として軸を, 床に垂直で図4の鉛直上向きを正としてy軸をおき,床に対する小物体の速度の , 成分をそれぞれひとし, 床に対する三角台の速度をVとする。 ただし,速 度の水平成分は図4の右向きを正とし, vx > 0, vy < 0, V<0である。 また, 重 力加速度の大きさをgとし,空気の抵抗とすべての摩擦を無視する。 問4 【実験2】において, 小物体が斜面をすべりおりる前後で運動量保存則が成り 立つことを用いて得られる関係式として正しいものを、次の①~⑥のうちか ら一つ選べ。 12 v cose + V = 0 mucose + MV = 0 - 15 - ③ mux + MV = 0 ⑥muy = 0

回答募集中 回答数: 0
物理 高校生

こちらの問題の(1)ですが、どうやってVab,Vcd,Vefの向きを求めたらよいのでしょうか? 私は、回路BACD,DCEF内を貫く下向きの磁束が増えることから、それを打ち消す向きに誘導起電力が生じると考え、 Vab=-vb(x0-d)l Vcdの向きは分かりませんでした... 続きを読む

第2問 図2-1のように, なめらかで水平な xy平面上に, 長さ 2d で抵抗の無視で きる2本の導体棒を間隔でx軸と平行に配置し、長さ1,抵抗値の3本の金属 棒AB, CD, EF をy軸と平行に、2本の導体棒の両端および中央に接合して, は しご形回路を作る。 金属棒は細く,その内部に生じる電場は一様であるとする。 x>0 の領域には鉛直下向き(紙面に垂直で表から裏の向き)に磁場がかけられて いる。その磁束密度の大きさBはxに比例して大きくなり, B=bx (6>0)と表 される。以下のすべての場合において, はしご形回路は全体が磁場中にあるものと する。はしご形回路にはたらく摩擦や空気抵抗, はしご形回路を流れる電流による 磁場の影響は無視できるものとする。 以下の設問に答えよ。 I はしご形回路をx軸の正の向きに一定の速さで運動させる。 金属棒 CD の x 座標x (x > d) とする。 y O (1) 金属棒 AB, CD, EF に生じる誘導起電力をそれぞれ VAB, VCD, VEF とす る。 VAB, VCD, VEF をb, x, l, v, dのうち必要なものを用いて表せ。 た だし,誘導起電力はy軸の正の向きを正とする。 (2) 金属棒 AB, CD, EF に流れる電流をそれぞれiAB, icD, iEF とする。 ŻAB, icD, iEF をb, d, v,l,rのうち必要なものを用いて表せ。 ただし,電流はy 軸の正の向きを正とする。 119.7 B A r iAB d * D C r Xo icD d HF E LEF B=bx V XC

回答募集中 回答数: 0
物理 高校生

なぜ⑴では空気の屈折率を文字で置いてるのに、⑷は屈折率1で考えてるのか教えてください。

|30| 光通信などに使用される光ファイバーでは、光の全反射現象などが利用されている。 その原 理を図のような円柱状媒質のモデルで考えよう。 円柱の中心軸からある半径までの部分は屈折 率(絶対屈折率nの媒質Iであり,その外側は屈折率nの媒質ⅡIである。円柱の端面は中心 軸と垂直であり、図は,円柱の中心軸を通る平面で切った断面図である。 この平面内で , 空気 中から円柱の端面の中心点Aに入射角で入ってくる光が, 屈折して円柱内に入り, その後ど のように伝わるかを調べる。 屈折率の間には、 常に nnn (no は空気の屈折率) という 関係があるものとして, 以下の設問に答えよ。 (1) 光が媒質I と媒質ⅡIの境界面で全反射をして, 媒質Iの中だけを伝わるためには,入射角 はどのような条件を満たせばよいか。 sin0 についての不等式で示せ。 (2) 屈折率の大きさによっては,入射角をどのように選んでも光が媒質 ⅡIの中に入れないこ とがある。 そのようなことが起こらずに, 光が媒質ⅡIの中にも入ることができるためには, 屈折率の間にどのような関係があればよいか。 (3) 屈折率の間に設問 (2)で求めた関係がある場合, 光が媒質ⅡIの中には入るが円柱の外には出 ないためには,入射角0はどのような条件を満たせばよいか。 (4) 光が点Aに入射角で入射し, 媒質Iの中を全反射しながら光ファイバーの長さの方向 に距離だけ進む時間を求めよ。 ただし, 真空中での光速度をcとする。 空気 no 0 A no N2 "n₁" n2 空気 媒質 ⅡI -媒質Ⅰ 媒質 Ⅱ

回答募集中 回答数: 0
物理 高校生

芝浦工業大学の2222年度、2月2日の問題です。 (1)から分からないので教えて欲しいです。

1. 以下の設問の解答を所定の解答欄に記入せよ。 導出過程は示さなくてよい。 なお, 解答中に分数が現れる場合は既約分数で答えよ。 (A) 図1(a)のように、内側の断面積S の円筒状の容器を水平に設置し, その中に 気密を保ちながらなめらかに動くピストンが付いている。 容器の右側にはコック が取り付けられており, ピストンの右側に大気を入れることができる。 容器の左 内面とピストンの左面の距離をxとする。 容器は壁を介して外部と熱を交換で き, ピストンは熱を通さない。 ピストンと容器の左側の面はばね定数k, 自然長 Lの軽い体積の無視できるばねでつながれている。 ばねは円筒状の容器の左面中 央とビストンの左面中央を結ぶように取り付けられており.たわむことなく水平 方向のみに動くものとする。 また, 容器とばねの熱容量は無視できるものとして 以下の操作 A, 操作B, 操作Cをおこなった。 操作A 容器の左側に単原子分子理想気体を入れ、 右側を真空にしてコックを閉 じたところェ=2Lであった。 操作B 操作Aの後, コックをゆっくり開き大気を容器の右側に取り込み十分に 時間が経過したところ, x= 12/2となった。 操作C 操作Bの後。 図1 (b)のように容器の左側に熱容量および体積が無視でき るヒーターを取り付け、容器の左側内部の気体のみに熱を加えること ができるようにし、さらに容器の右側を除く部分をすき間なく断熱容器 で覆った。 コックを開いた状態で, ヒーターで熱量Qをゆっくりと容 器の左側内部の気体のみに与えたところェ=2Lとなった。 S ・円筒容器 1,00000000 お間ライブ ピストン コック 図1 x 1,00000000 ヒーター 断熱容器 (b) ピストン (イ) 大気の圧力をk, L, Sを用いて求めよ。 (ロ) 操作Cにおいて気体に与えた熱量Qをとを用いて求めよ。 2224500402

回答募集中 回答数: 0