学年

教科

質問の種類

物理 高校生

(2)の解説にW=−0.50×1.0×9.8×l=−4.9 とありますがWの硬式はW=fxなのに何故9.8や動摩擦係数が入ってくるのですか? 何故そのあと 1/2×1.0×0²-1/2×1.0×7.0²=−4.9l l=7.0²/2×4.9 という式になるのですか? 物理基... 続きを読む

基本例題 24 保存力以外の力の仕事 点Aを境に左側がなめらかで右側があ らい水平面がある。 点Aより左側のなめ らかな水平面上で, ばね定数100N/m の ばねの一端を固定し,他端に質量 1.0kg -0.70m→ [-00000 自然の長さ→ 109,110 解説動画 -I [m〕- A あらい水平面 B の物体を置く。 ばねを 0.70m だけ縮めて手をはなすと, 物体はばねが自然の長さ になった位置でばねから離れた。重力加速度の大きさを9.8m/s2 とする。 (1) 物体がばねから離れるときの速さは何m/sか。 物体はばねから離れた後右に進み, 点Aを通過して点Bで停止した。 (2) 物体とあらい面との間の動摩擦係数が 0.50 のとき, AB間の距離は何mか。 指針 (2) 力学的エネルギーの変化=動摩擦力がした仕事 (W=-Fx) 解答 (1) 最初に物体のもつ弾性力による位置エ ネルギーはU=1/12/ -×100×0.702J ばねから離れた後に物体のもつ運動エ ネルギーは K=1×1.0×2 [J] ゆえにv=√100×0.70°=7.0m/s (2) 動摩擦力が物体にした仕事は W=-0.50×1.0×9.8×l = -4.92 [J] 物体の力学的エネルギーの変化= W より 1/12×1.0×0°-12×1.0×7.0°=-4.9ℓ 力学的エネルギー保存則より 7.02 ゆえに1= -=5.0m +1/2×100×0.70°= 1/2×1.0×μ+0 2×4.9

解決済み 回答数: 1
物理 高校生

なかなか解けないのでどなたかこの問題を解説して頂きたいです

L 14101 40 多 半角/全角 ! # あ $ う % え & お 漢字 1 ぬ 2131 3 あ 4 う 5 K Q W tab → 以下の問いでは、重力加速度の大きさをとして答えよ。 【問1】質量m の小物体が液体中を落下するときは、 重力 mg の他に、 液体 との間に抵抗力が働くと考えられる (浮力も考慮する必要があるが、 体積 が小さく浮力は無視できるものと仮定する)。 実験と測定を行い、ある質量1kgの物体の、時刻 t [s] における位置 y(t) [m] (液面からの深さ、y軸を液面を原点として、下向きを正にと る)は となることが分かった。 y(t)=2g(t+2e-lt-2) (i) 時刻 t における速度vy(t)、加速度 ay (t) をそれぞれ求めよ。 (6) y (ii) 横軸をt縦軸をyとしてvy (t) のグラフの概形を 0 ≤t ≤ 20 の範囲で描け。 (iii) lim vy(t) を求めよ。 また、この結果を物理的に解釈せよ。 t→∞ 抵抗力 重力 mg (iv) 運動方程式を利用して物体に作用する抵抗力の大きさ fを求め、 fvに比例することを示せ。 【問2】 水平面上を円運動する、 質量が3kg のおもちゃの車を考える。 円運動の中心を原点にとり、円運動して いる平面上に適当な2つの軸(z軸と軸)をとるとき、時刻における車の位置 = (s,y) が次式のように なっていたとする: (x(t),y(t)) =2(cos(+12), sin(+2)) (7) (r,y の単位は [m]、tの単位は[s] とする。) (i) 0 ≤t < 2 の範囲で、車の軌跡を描け。 (ii) 角速度 ω を求めよ。 (iii) 時刻 t における車の速度 J = (Vx, Vy) と、その大きさv=vvz + v7z [m/s] を求めよ。 (iv) 時刻 t における車の加速度 が d = (ax, ay) (8) (9) (a,(t), a,(t)) = (-sin (²), cos (+1)) - (cos (+12), sin (+²)) 212 (10 になることを、速度の微分を計算して確かめよ。 (v)加速度の大きさα = || を求めよ。 ※ペクトルの大きさと内積の関係、 (cos (12), sin (12)) = で、互いに直交する = 1 にあらわれるベクトル (-sin (2), cos (2)) が、それぞれ大きさ1 = =121=1.2=ことを用いると、計算が簡単にできる。

回答募集中 回答数: 0