学年

教科

質問の種類

物理 高校生

RT0はP0V0と書いても丸になりますか?

24 0 ふる あ 発展例題28 Vグラフと熱効率 単原子分子からなる理想気体1mol をシリンダー内に密 閉し、図のように,圧力と体積VをA→B→C→D→Aの2 順に変化させた。 Aの絶対温度を To, 気体定数をRとする。 (1)この過程で気体がした仕事の和W'はいくらか。 発展問題 328 BC Do A D (2) AB, およびB→Cの過程で,気体が吸収した熱はそ 0 Vo 2V V 0 れぞれいくらか。 (3)この過程を熱機関とみなし, 有効数字を2桁として熱効率を求めよ。 指針 気体が外部と仕事のやりとりをする 過程は,体積に増減が生じたときであり,B→C, D→Aである。 なお,熱効率は,高温熱源から得 た熱に対する仕事の割合である。 Q1 は,定積モル比熱 「Cv=3R/2」 を用いて Q=nCvAT=1×122×(2T-T)=22RT 3 V B→Cは定圧変化である。 気体が吸収した熱量 TA 解説 (1) DAでは, 気体がする仕事 は負になるので, 整理 W'=2po (2Vo-Vo-po (2Vo-Vo)=poVo (2) B, C, D の温度 TB, Tc, TD は,Aとそれ ぞれボイル・シャルルの法則の式を立てると, povo 2po Vo po Vo 2po.2 Vo = To TB To Tc DoVo To Po.2Vo TD TB=2To, Tc=4To, Tp=2To A→Bは定積変化である。 気体が吸収した熱量 Q2は,定圧モル比熱 「Cp=5R/2」 を用いて Q₂=nC₂4T=1׳R×(4T,−2T₁)=5RT, (3)TcTp, T, Ta から, C→D, D→Aで はいずれも熱を放出している。 したがって, W povo Q1 + Q2 (3RT/2)+5RT 熱効率e は, e= Aにおける気体の状態方程式poV=RT から, e= po Vo 13RT/2 DoVo 13po Vo/2 = 2 13 = 0.153 0.15 327 明照

解決済み 回答数: 1
物理 高校生

(4)についての質問です。 ボールが何m移動したかという方の問題ではグラフから考えるのが簡単だしいいと言うのは分かるのですが、 何故x= v0t+1/2at^2という公式を使うと答えが出ないのかが分かりません。

JEST 発展例題2 等加速度直線運動 →発展問題 24,25,26 斜面上の点から, 初速度 6.0m/sでボールを斜面に沿 って上向きに投げた。 ボールは点Pまで上昇したのち, 下 降し始めて、点0から5.0mはなれた点を速さ 4.0m/s で斜面下向きに通過し, 点Oにもどった。 この間, ボール は等加速度直線運動をしたとして, 斜面上向きを正とする。 (1) ボールの加速度を求めよ。 5.0m P Q 6.0m/s NJ (9) (2) ボールを投げてから, 点Pに達するのは何s後か。 また, OP間の距離は何mか。 (3) ボールの速度と, 投げてからの時間との関係を表すv-tグラフを描け。 (4) ボールを投げてから,点Qを速さ 4.0m/sで斜面下向きに通過するのは何s後か。 また, ボールはその間に何m移動したか。 指針 時間 t が与えられていないので, 「v-vo2=2ax」 を用いて加速度を求める。 また, 最高点Pにおける速度は0となる。 v-tグラフ を描くには,速度と時間との関係を式で表す。 解説 (1) 点0, Qにおける速度, OQ 間 の変位の値を 「v2-vo2=2ax」に代入する。 a=-2.0m/s2 (-4.0)2-6.02=2×α×5.0 (2)点Pでは速度が0になるので,「v=vo+at」 から 008 0 = 6.0-2.0×t t=3.0s 3.0s 後 OP 間の距離は, 「v2-vo2=2ax」 から, 02-6.02=2×(-2.0) xx x=9.0m (「x=cat + 1/2a2」からも求められる。) (3) 投げてからt [s] 後の速度v [m/s] は, 「v=vo+at」 から, v=6.0-2.0t e-tグラフは,図のようになる。 [m/s]↑ UT 6.0 OP間の距離 PQ間の距離 R 1 2 3 4 56t[s] -4.0 -6.0 (1) (4) 「v=vo+at」 から, -4.0=6.0+(-2.0) xt t=5.0s 50s 後入量の中原 (S) ボールの移動距離は, v-tグラフから, OP 間 の距離とPQ間の距離を足して求められ 6.0×3.0 2 + (5.0-3.0)×4.0 2 =13.0m Point v-tグラフで, t軸よりも下の部分の 面積は、負の向きに進んだ距離を表す。

解決済み 回答数: 2
物理 高校生

(3) 棒PQにはたらく水平方向の力ってなんですか? 速さが一定になると力が0になる理由と流れる電流が0になる理由も分かりません。解説をお願いします🙇‍♀️

電磁力と誘導起電力 発展例題 45 鉛直上向きに磁束密度Bの一様な磁場中に, 2本の 直線導体のレールが間隔で水平に置かれ, 内部抵抗 スイッチ の無視できる起電力の電池, 抵抗値Rの抵抗, およ びスイッチに接続している。 レール上の導体棒 PQ は、レールと垂直であり, なめらかに移動できる。 E (1) スイッチを閉じた直後, 棒 PQ が磁場から受け る力の向きと大きさを求めよ。 指針 (1) スイッチを閉じた直後には, 棒PQにまだ誘導起電力は生じていない。 314 (2) 速さがvのとき, 誘導起電力はvBl である。 棒PQ を起電力 v Blの電池とみなし, キルヒ ホッフの第2法則を用いる。 (3) 速さが一定となるとき, 慣性の法則から, 棒 PQにはたらく水平方向の力は0となる。 解説 (1) スイッチを閉じた直後, 棒PQ の誘導起電力は0である。 棒PQを流れる電 流はQ→Pの向きに,I=号である。 棒PQ RD が磁場から受ける力の向きは, フレミングの左 手の法則から、 図の右向きとなる。 力の大きさ EBU Fは, F=IBl= R (2) 棒PQ に流れる誘導電流は,レンツの法則 棒PQ の速さが” となったとき, 棒 PQ に流れる電流の大きさはいくらか。 棒PQの速さは一定値に近づく。 この速さはいくらか。 E-vBl R 発展問題 536,537 P低 B v= 電磁誘等 から,P→Qの向きであ Pが低電位, Qが高 電位となる。 棒PQは, 誘導起電力を生じる電池 とみなすことができ,P が負極, Qが正極となる (図)。したがって,誘導起電力は,電池の起電 力Eと逆向きに 流をことすると、 Blである。 PQを流れる電 キルヒホッスの第2法則から、 E-v Bl E-vBl=Ri i== R (3) 一定の速さをvとする。 このとき, 棒PQに はたらく水平方向の力は0 となるので、流れる。 電流も0である。 (2) のの式を用いて, 0== E BU R E ◎B v Bl P

解決済み 回答数: 1
物理 高校生

(1)のマーカー部についてです。 ドップラー効果の式についてです。 音源が近づく場合はV -v0となると思ったんですけど、なぜこのような式になるのですか?

発展例題32 反射板とドップラー効果 物理 図のように、観測者Oと振動数fo [Hz] の音源Sは静止し ており,反射板Rが左向きに速さvo 〔m/s]で運動する。いず れも同一直線上にあり,音速をV[m/s] とする。 次の各問に 答えよ。 10 (1) 観測者Oが聞く反射音の振動数は何Hz か。 MOL 指針 (1) 反射板Rは, 音源Sから出さ れた音を観測者として受け,それを反射すると き, 音源としての役割を果たす。 それぞれドッ プラー効果の式を用いて計算する。 (2) 1波長分の波を1個と数えると,音源Sが 発した波の数と観測者Oが聞く波の数は等しい。 解説 (1) 反射板R が受ける音の振動数 V+vo ._._._._.___.___________________ (2) 音源Sが音を to [s] 間発したとき,観測者Oは反射音を何s間聞くか。 You 6 LATKER 70 t=f₂ fi(Hz)l£, f₁= -f[Hz]小さくしてみた 反射板Rは振動数f] [Hz] の音源とみなせ, 観 fzt=foto 0 WHASON U S foto V-Vo V + vo = 発展問題 389 -to 測者が聞く反射音の振動数 〔Hz] は, V V + vo f₂=- -f₁= V-Vo V-vo 日 fo(Hz) 888 (2) 観測者Oは1s間にた個の波を受け、求め る時間をとすると,その間に受ける波の数 foto は等しい。 だと,音源Sが発する波の数 Vo SX4 ( ( 東亜大改) R V-voto(s) V + vo

未解決 回答数: 1
物理 高校生

(2)で質問です。 イプシロンやSが書かれていない時はそのままdの変化で考えて大丈夫なのですか?

発展例題38 極板間にはたらく力 電気容量 C,極板間隔dの平行板コンデンサーがある。両極板 ⊿x には,±Q の電荷がたくわえられている。 極板間の電場は一様で あるとして,次の各問に答えよ。 +Q -Q (1) コンデンサーがたくわえている静電エネルギーを求めよ。 √(2) 極板間の距離をゆっくりと 4x引きはなしたときの静電エネルギーを求めよ。 V (3) 極板間にはたらく引力の大きさを求めよ。 指針 極板を引きはなす仕事の分だけ,コ ンデンサーの静電エネルギーは増加する。 また, 引きはなす力と極板間の引力の大きさは等しい。 解説 (1) 静電エネルギーをUとして, U= = 2C (2) 極板を引きはなした後の電気容量をCとす る。 電気容量は, 極板間隔に反比例するので、 C'= d+4x -Cとなる。 求める静電エネルギー U'は, U'= 2C' = Q°(d+4x) 2Cd ■発展問題 473 d (3) 極板を引きはなす力の大きさをFとする。 この力がする仕事 F⊿x は, 静電エネルギーの 増加分 U'-Uに等しい。 F4x=U'-U=Q24x F= Q² 2Cd 2Cd 極板間の引力の大きさは,極板を引きはなす ときに加える力の大きさFと等しい。 (1) (注) 真空の誘電率を so, 極板の面積をSとする。 C = S/d から,Cd=Sであり、力の大きさ Q2/(2Cd) はQ2/(2S) と表される。 Q, S, E は極板間隔が変化しても一定であるから,極板 間の引力は一定となる。

解決済み 回答数: 1
物理 高校生

黄色のマーカー引いてる所がわかりません。 (1)のy成分はなぜ−g cosθになるのでしょうか。 なぜ−がつくのかがわかりません。

口 発展例題5 斜面への斜方投射 [物理 図のように,傾斜角 0の斜面上の点Oから, 斜面と垂直な 向きに小球を初速v で投げ出したところ, 小球は斜面上の 点Pに落下した。 重力加速度の大きさをgとして,次の各問 答え 指針 重力加速度を斜面に平行な方向と垂 直な方向に分解する。 このとき, 各方向における 小球の運動は,重力加速度の成分を加速度とする 等加速度直線運動となる。 ■解説 (1) 斜面に平行な方向 にx軸、垂直な方向に y軸をとる (図)。 重力 加速度のx成分,y成 分は,それぞれ次のよ うに表される。 O (1) 小球を投げ出してから, 斜面から最もはなれるまでの時間を求めよ。 (2) OP 間の距離を求めよ。 y -gcosoi 2 gsin g P x 成分 : gsin0 y成分: -gcose 方向の運動に着目する。 小球が斜面から最も はなれるとき, y方向の速度成分vy が 0 となる。 求める時間を とすると, 「vy=v-gcoset] の式から, 0=v-gcose・t t₁ = Vo gcoso (2) Pはy=0 の点であり, 落下するまでの時間 をもとして, 「y=vot-- - 1/27g cost ・f2」の式から, 0=vol2-1212gcos0.12 0=1₂(vo-cost-t₂) t> 0 から, t₂ = 200 gcoso 発展問題 48,52 Vo O x 方向の運動に着目すると, x=-12gsinet か ら, OP間の距離xは, x= =1/29s gsino.t=1212gsine. 2v" tan0 gcoso P 200 gcoso Point 方向の等加速度直線運動は, 折り返 し地点の前後で対称である。 y=0 から方向 の最高点に達するまでの時間と, 最高点から再 びy=0 に達するまでの時間は等しく, t=2t, としてを求めることもできる。

解決済み 回答数: 1
物理 高校生

黄色でマーカー引いたところがどうして2πx/16となるのか分からないです。教えてください🙇‍♀️

入 =2.0mである。 波の速さをv[m/s」として、 発展例題 30 正弦波の式物理 図のような正弦波が, x=0を波源として, x 軸の正の向きに進行している。 実線の波形から 最初に破線の波形になるまでの時間は, 0.10s 0.100 であった。 実線の状態を時刻 t=0s とする。 (1) 波の伝わる速さ, 周期, 振動数を求めよ。 (2) t=0sにおける波形を式で示せ。 (3) x=0mの媒質の変位y〔m〕 , 時刻t [s] を用いて表せ。 指針 正弦波の波形や, 単振動をする媒質 の変位は,いずれも sinを用いた式で表される。 それぞれの式は、波の波長や周期, 振動のようす をもとにして考えることができる。 解説 (1) 波は 0.10s間に2.0m進んで 2.0 0.10 おり, 速さは, v=· 図から, 波長 = 16m なので,周期Tは, T= 入_16 V 20 = 0.80s =20m/s 振動数fは, f= =1.25 1.3Hz T 0.80 (2) 図の波形において, 1波長分 (入=16m) はな れた位置どうしでは位相が2異なり, t=0の とき x=0の媒質の変位はy=0 なので, 位置 2 1 CATO -1 -2 y〔m〕 10 発展問題 356 進む向き 20 088 x(m) NEOT 126 W= 2π 77" xでの位相 (sin の角度部分)は、2016=7 8 と表される。 また, x=0 から x>0 に向かって まず波の山ができており、波の振幅が2.0mな ので,求める波形の式は, y=2.0 sin- DIVER A (3) 媒質の振動では1周期 (T= 0.80s) 経過する ( と位相が2進み, x=0の媒質の変位は,図か ら,t=0のときにy=0 なので、時刻t におけ る位相 (sin の角度部分) は, 2π- t =2.5t と (部分)は,270.80 表される。 また, x=0の媒質は, t = 0 から微 小時間後に負の向きに動くので、求める変位y の式は, y=-2.0sin 2.5t TIC 199 TX 8

回答募集中 回答数: 0
物理 高校生

物理の正弦波の問題です。 黄色のマーカー引いたところの導き方を教えてください!🙏

発展例題 30 正弦波の式 物理 図のような正弦波が, x=0を波源として, x 軸の正の向きに進行している。 実線の波形から 最初に破線の波形になるまでの時間は, 0.10s であった。 実線の状態を時刻 t=0s とする。 -1 (1) 波の伝わる速さ, 周期, 振動数を求めよ。 -2 V (2) t=0sにおける波形を式で示せ。 (3) x=0mの媒質の変位y [m] を, 時刻 t[s] を用いて表せ。 指針 正弦波の波形や, 単振動をする媒質 の変位は,いずれも sin を用いた式で表される。 それぞれの式は、波の波長や周期, 振動のようす をもとにして考えることができる。 解説 (1) 波は 0.10s間に2.0m進んで 2.0 0.10 図から, 波長 入=16mなので, 周期Tは, T=^_16 V 20 おり, 速さは, ひ= = 0.80s =20m/s 振動数fは. T 0.80 (2) 図の波形において, 1波長分 (入=16m) はな れた位置どうしでは位相が2ヶ異なり、 t=0の とき, x=0の媒質の変位はy=0 なので,位置 = -=1.25 1.3Hz ↑y〔m〕 2 1 10 ■発展問題 356 進む向き A 20 x[m〕 TEORIA x での位相 (sin の角度部分)は、2= TX 8 と表される。また, x = 0 から x>0 に向かって まず波の山ができており, 波の振幅が 2.0m な TX ので,求める波形の式は、 y=2.0sin- VARO 8 (3) 媒質の振動では1周期 (T= 0.80s) 経過する と位相が2ヶ進み, x=0 の媒質の変位は,図か ら, t=0のときに y = 0 なので、 時刻 t におけ る位相 (sin の角度部分) は, 2πー MER 表される。また, x=0の媒質は、 t=0 から微 小時間後に負の向きに動くので 求める 変位y の式は, y=-2.0sin2.5tt = 2.5t と 20.80 490

回答募集中 回答数: 0