学年

教科

質問の種類

物理 高校生

大問6の問4、問5の式がどうしても わかりません。 教えていただけますか。 答えも添付します。

6 図のように,鉛直方向上向きを正としてx軸をとり、原点Oには小球Aが,位置座標 x=x には小球Bがある。 時刻 t=0に小球Aを鉛直上向きに初速度v で打ち上げると 同時に,小球Bを静かに放した。 重力加速度の大きさをgとし,以下の各問に答えなさ い。 但し, 空気抵抗は無視できるものとし、速度、加速度は鉛直方向上向きを正とする。 0-16- X Vo V-V-gt O-Vogl 20 Vo =16 x+ B Vo A 【 配点: 24点】 Vist V=Votat V=Vo-ft (1) 時刻 t = 0 から小球 A, B が衝突するまでの間において, 時刻 t における以下の問 ① ~ ④ に答えなさい。 解答は X01 Vo,g, t のうち必要なものを用いて表しなさい。 ① 小球Aの速度を求めなさい。 (2) 小球Bの速度を求めなさい。 (3) 小球 A の位置座標を求めなさい。 ④ 小球Bの位置座標を求めなさい。 Vot (2) 小球Aと小球Bが衝突する時刻を求めなさい。 Y = ±gt² lo-1xgx V² t (3) 小球 A, B が衝突する位置座標xx>0であるための, A の初速度が満たすべき 条件をxo, vo,g を用いて表しなさい。 2 2 Votentio Votyge (4) 打ち上げられた小球 A の速度が0になった瞬間に,小球Bとの衝突が起きたとする。 ① 小球 A の初速度vo を Xorg を用いて表しなさい。 ② 衝突した位置の座標をx のみを用いて表しなさい。 V=Vogt- •VOXP Vox V-Vrat V-V-st = Vo-gt t O-Votat at=vo -8- Xyz M² 0-16 at Vo² 26-10-26 2V₂-

回答募集中 回答数: 0
物理 高校生

教えてください💦

教科書 No.2 物理基礎 PP.34 ~ 73 答えはすべて解答欄に書きなさい。 [1] 次の問いに答えなさい。 (1)力の3要素のうち,カの大きさ, 力の向き以外のあと1つは何か。 (P.35参照) (2) ばねを伸ばしたときの弾性力の大きさは、自然長からの伸びに比例するという法則を何の法則と呼ぶ か。 (P.41 参照) (3) 物体が,現在の運動状態を維持し続ける性質を何というか。 (P.42 参照) (4) 物体の質量がm,生じる加速度がα, はたらく力がFのとき,運動方程式は文字式でどのように表さ れるか。 (P.48 参照) (5)地球上で質量 50kg の人にはたらく重力の大きさは何 N か。 ただし、重力加速度の大きさは 9.8 m/s2である。 (P.49 参照) (6)自然長 0.10m のばねを,大きさ 2.0Nの力で引くと0.12mになった。このばねのばね定数はいくら か。 (P.41 参照) (7) 質量 1.0kg の台車に,次の図のように力を加えた。このときに生じる加速度の大きさを求めなさい。 8.0 N (P.48 参照) 2.0N [2] 力について,次の問いに答えなさい。 (1)次の①~④の力の名称として最も適切なものを,あとの語群から 1 つずつ選び、記号で答えなさい。 (P.35 参照 ) NO ④ [群] A. 弾性力 E. 張力 B. 浮力 F. C. 摩擦力 D. 空気の抵抗力 G. 垂直抗力 H. 静電気力 No.2-1

回答募集中 回答数: 0
物理 高校生

問題(エ)で2倍になる理由がわかりません。点Pは初めて極大になるから(L1-L2)=mλから一倍になるのではないのでしょうか?説明お願いします。

問5 次の文章中の空欄 物理 エ に入れる語と数値の組合せとして最 も適当なものを後の①~⑥のうちから一つ選べ。 6 図6のように、振幅, 波長の等しい音を同位相で発している小さいスピー カー A, B がある。 Bの位置を通り, A, B を結ぶ直線に対して垂直な直線 上で, Bから離れる向きにゆっくりと進みながら音の大きさを観測した。 た だし,各スピーカーからの音の大きさは距離によって変化しないものとし, 反射音などはないものとする。 また, A, B からの音が強め合うときに,観 測される音は極大になるものとする。 A P 図 6 A Bの位置から進むと, 点Pではじめて音の大きさが極大となり,さらに 進むと,点Qで2回目に音の大きさが極大となったが,その後, 進み続け ても音の大きさは極大にならなかった。 この間, 音を観測する点でのAか らの距離とBからの距離の差の大きさは, Bから離れるにしたがって ウ なる。また、点PでのAからの距離とBからの距離の差の大きさ は, A, B が発する音の波長の I 倍である。なお, 図6 中の BP, BQ の長さは正しいとは限らない。 610 ウ H ① 小さく 1 小さく 2 小さく 3 大きく 1 (5 大きく 2 (6 大きく. 3 -7- ばれた図形の面 40.

回答募集中 回答数: 0
物理 高校生

(4)のマーカーの部分が分かりません💦 糸がたるまない=遠心力が重力と張力の合力以上になる という考え方は間違っているのでしょうか??

図(a)に示すように、天井に取付たれた支点 0及び支点 0′から,質量mのおもりが軽い糸 5 で吊り下げられ, 床から高さ の位置Aで静 止している。 2本の糸のなす 角∠OAO'は90°である。 支点0とおもりを結 糸の長さは3ヶであり, 床から2つの支点まで の高さは4rである。 糸の質量, 伸び, 空気抵 抗は無視できるものとし, おもりは1つの鉛直 面内で運動するものとする。 支点の直下で床 から2mの高さの点Pには太さを無視できるくぎ が鉛直面に垂直に固定されている。 重力加速度 の大きさをgとする。 (1) 糸OAに生じている張力の大きさを求めよ。 (2) おもりの最下点Bを通過するときの速さ を求めよ。 (3) おもりの最下点Bを通過した後、「点Pを支点 として運動する。 通過直前の糸の張力の大 きさを T1, 通過直後の糸の張力の大きさ T2 を T2 とする。 その両者の比 の値を求 めよ。 おもりを糸O'Aから静かに切り離したところ, 図 1 (b)に示すようにおもりは点Oを支 点とする運動を始めた。 再び, おもりを位置Aに戻し, 初速度を与え たところ, おもりは図1(c)に示すように, 糸がたるまずに点P点の真上の点C (OC=CP =r) に到達した。 到達すると同時におもりを 糸から切り離したところ, おもりは床に落下し た。 ただし、初速度はおもりの描く軌跡に対して 接線方向に与えるものとする。 m (4) 糸がたるまずにおもりが点Cを通過するた めに必要な初速度の大きさの最小値v を 求めよ。 m 3r 図1(a) m D 3. 図1 (b) 3r KL 図1 (c) PB ----- B ぎK-2 O (5) 位置Aでおもりに 【問1】 (4)で求めたv を初速度の大きさとして与えた場合の点Cか ら落下地点D点までの水平距離Lを, m, g,の中から必要なものを用いて表わ せ。

回答募集中 回答数: 0
物理 高校生

この問題の(き、く)の部分の解決で、何故x軸方向にE/Bで移動する観測者と分かるのですか? どなたか教えて頂けると助かります

VI. 次の文を読み、下記の設問1・2に答えよ。 解答は解答用紙の所定欄にしるせ 14 2022 年度 物理 電場や磁場の影響を受け, y 図1のように,y 軸方向正の向きに強さE の一様な電場がかかっているとする。 電気量 g (g > 0)の荷電粒子が時刻t = 0 に原点 0 から初速度 0(0) で運動を開始した。 時刻でのこの粒子の位置は (x,y)=(あ, である。 である。 ・図2のように、xy平面に垂直に、紙面の裏から表に向かって, 磁束密度B の一様な 場がかかっているとする。 質量 m, 電気量 g (g > 0) の荷電粒子が時刻 t = 0 に隠さ 0から初速度v = (u,0)(v>0) で運動を開始した。 この粒子が運動開始後に 初に y 軸を通過するときの時刻はt= E V y 平面上を運動する荷電粒子を考える。 0 STUSKO 図3のように, y 軸方向正の向きに強さE の一様な電場と, xy平面に垂直に紙面の から表に向かって、 磁束密度B の一様な磁場の両方がかかっているとする。 質量m, t 気量g(g> 0)の荷電粒子が時刻t = 0 に原点Oから初速度 (0,0)で運動 開始した。この粒子の x 軸方向,y 軸方向の速度をそれぞれ ux, vy, 加速度をそれぞ = Q1 Q とすると,運動方程式は 図1 X (x,y)=(0, B [O うで,そのときの座標は え) V い y 図2 B 立教大 0 図3 とな で運 で道 道を Vo 1. 2.

回答募集中 回答数: 0
物理 高校生

問9で、sinθ=√3/4なのは何故ですか?

例題 2 屈折波の波面 図のように,平面波が境界面に達した。 屈折 波の波面を作図せよ。 ただし, 媒質 I に対す る媒質ⅡIの屈折率を2 とする。 2 (+式 (9)) から, 01=n12=2 V₂² V₁ T 境界面 -= 1212 V₁ 指針 屈折の法則 -=n1z(p.152・式(9))から, 媒質ⅡIにおける波の速さが,媒質 V2 Iにおける速さの何倍になるかを求める。 ホイヘンスの原理にもとづいて素元波を描 き, 屈折波の波面を作図する。 解 媒質 I, I における波の速さをそれぞれ v1, v2 とすると, ma 逆の屈折る V₁ V2 V2 であり、媒質 Ⅱ における波の速さは, 媒質 Ⅰ における速さの1/12/2になる。図のように,B2 からAB におろした垂線とA,B との交点 B2C の素元波 (半 をCとして, B, から半径 円) を描く。 このとき, B2 からこの素元波に 2 引いた接線が, B2 を通る屈折波の波面となる。他の波面は,入射波の波面と境界面の『 交点から,この接線に平行な線を引くことで求められる。 B1 B2C 2 B2 入射波 の波面 媒質 Ⅰ A2 媒質 ⅡI] 屈折波 の波面 入射波 の波面 媒質 Ⅰ 媒質 Ⅱ 問9 類題例題2で,入射波の波面と境界面のなす角を60° とする。このときの屈折角 を0として,sin0 の値を求めよ。答えは分数のままでよく, ルートをつけたままでよい。 8 平面波 障害物に を送ると, にまわりこ 回折は, 部分にも すき間 (a))。 した る (図 波長よ の

回答募集中 回答数: 0