学年

教科

質問の種類

物理 高校生

解答を教えて欲しいです お願いします🙇‍♀️

[II] 質量Mの人工衛星が,地表から高さんで,地球を中心として,等速円運動を している。地球を質量 Mo, 半径Rの密度が一様な球とし,自転,公転の影響は ないものとする。地表での重力加速度の大きさをg, 地球から無限遠の地点を万 有引力による位置エネルギーの基準点として、 以下の問いに答えよ。 (1)地表の物体にはたらく重力は、物体と地球の間にはたらく万有引力と等し い。また,地表の物体にはたらく重力は,地球の全質量が地球の中心に集まっ た場合の万有引力と考えてよい。 これらのことから, 万有引力定数を Mo, g, R を用いて表せ。 映画 (2)人工衛星の向心加速度の大きさはいくらか。 R, h, g を用いて表せ。 (3) 人工衛星の速さ Vはいくらか。 R, h, g を用いて表せ。 (4) 人工衛星の運動エネルギーはいくらか。 M, R, h, g を用いて表せ。 (5) 人工衛星の万有引力による位置エネルギーはいくらか。 M, R, h,g を用い て表せ 人工衛星が,軌道を変えるために,質量m(m <M) の物体を, 人工衛星の進 行方向に対して真うしろに、瞬間的に発射した。 発射された物体の,発射前の人 工衛星に対する相対速度の大きさを”とする。 (6) 物体を発射した直後の人工衛星の速さ V はいくらか。 Vを含む式で表せ。 (7) 物体を発射した直後の人工衛星の力学的エネルギーはいくらか。 M, m, R, V', h, g を用いて表せ。 向 (8) 物体を発射した後, 人工衛星が無限の遠方へ飛んで行くことができるための V' の最小値はいくらか。 R, h, g を用いて表せ。 角度とか (A) 考慮せずに? (名)

回答募集中 回答数: 0
物理 高校生

問5相対速度の問題で、解答にある相対速度が表されてる図が何故そうなるのか教えて頂きたいです。 相対速度を考えるときの図の書き方も教えて頂きたいです。 回答よろしくお願いします🙇🏻‍♀️

物理 次に,AさんとBさんは、発射台が水平面に固定されていない場合の現象につ いて考察している。ただし、図3のとは正しくは描かれていない。 Aさん: 発射台が水平面上をなめらかに運動できるとき, 図3のように発射台から 見て水平方向から45°の方向に小球を打ち出すと, 小球が水平面に衝突す る直前の速度方向と水平面のなす角度が 45° とは異なるよ。 Bさん:小球を打ち出したときの反動で,発射台が動いてしまうのが原因だね。小 球が水平面に衝突する直前の速さをひとして考えてみよう。 打ち出した直後 落下する直前 小球 <45° 発射台 小球 水平面 水平面 問5 次の文章中の空欄 10 ものを,それぞれ直後の { 11 物理 に入れる式または語句として最も適当な } で囲んだ選択肢のうちから一つずつ選べ。 Aさん:Φ=60°になるとき,小球を打ち出した直後の,発射台に対する小球 の速さ”はどうなるだろう。 Bさん:発射台に対する小球の相対運動を考えると求められるよ。小球を打ち 出した後の台の速さをVとすると, v= 10 0 √2(V) ② √2V+ 2(+12/20) ③√√2 (V-v') ④ √2 (V+α) となるよ。 Aさん:一方で,発射台の質量が小球の質量より十分大きいときは ① 0°に近い値 11' 図 3 問4 小球を打ち出した後の発射台の速さはいくらか。 最も適当なものを,次の① ⑥のうちから一つ選べ。 ただし, 発射台の質量をM, 小球の質量をとす る。 9 mv'sin 45° mv'cos 45° mu'sino M M M mv'cos o M 2mv'sin 2mv'coso M M 11 ② 45°に近い値になるよね。 ③ 90°に近い値

回答募集中 回答数: 0
物理 高校生

問5の問題がわかりません。 解説のマーカーで線を引いた部分について、なぜ、1/4Tとなったのですか?

体1. 方向 問4 積 12 ③ Point 運動量の変化と力積の関係 物体の運動量の変化は、 積と等しい。 mv2mvy=FAt その間に物体が受けたか m質量 : 変化前の速度, V2 変化後の速度 Fat: 受けた力積 Point! 衝突での作用・反作用の法則 作用・反作用の法則より直線上の小球入 の衝突で小球 A. Bが及ぼし合う力は大きさが等 しく向きが逆である。 そのため, 衝突で小球が小 球Bから受けた力積をIとすると, 小球Bが小球A から受けた力積はと表される。 小球Aと小球Bが衝突したとき, 小球Bが小球 から受けた力積は, 運動量の変化と力積の関係から、 4mv-04mo (右向きに大きさ4mv) である。 作用・ 反作用の法則より 小球 A が小球Bから受けた力 は、4m (左向きに大きさ4mv)である。 問5 単振動の振幅,周期 13 8 Point! 単振動の振幅 小球Bの振動の中心はばねが自然の長さのときの 小球Bの位置(力のつり合いの位置, 小球 A と衝突 した位置)で,単振動の一方の端は小球Bが最もばね を押し縮めた (壁面に最も近づいた)ときの位置であ る。 そして、振動の中心から端までの距離が振幅で ある。 求める距離は,力学的エネルギー保存の法則を用 いると求めることができる。 1/2 =1/2x2 法則を用いると, 1.4mv²= よって, X=20√ 第3問 A 問1 動の周期をT とすると, T=2 衝突直後から小球Bは単振動を始める。この単振 二つの のスリッ 明暗の縞 4m m =4π k 問2 千 小球Bはばねが自然の長さ (振動の中心) の位置か ら単振動を始める。 単振動を始めてからはじめて小球 かばねを最も押し縮めたときまでの時間は 1/17 表されるので, 求める時間は, 1/27=1/2x47 m m =π √ k +α! 単振動の周期 小球Bの単振動の周期を導いてみよう。 ばねが自 然の長さからxだけ縮んでいるとき,水平右向きを 正とすると、小球Bにはたらく力はxと表され る。この力は復元力であり、小球Bの加速度をαと すると、運動方程式は4ma=kxとなるので. a=-- k x と表される。 4m また、単振動の角振動数を とすると a=-x と表されるので、上式と比較して k 小球Bの単振動の周期をTとすると 4m √ k 222 = 4π T= @ +α! 単振動の振幅 m k 単振動の角振動数を とすると, 小球Bが振動の 中心を通過するときの速さと振幅の関係は. k Point 経経反合 ※反 レー S1, S スリ リッ リッ この 光 Point! ばねによる単振動の周期 ばねにつながれた物体の単振動の周期は T=2π m √ k T: 周期, m: 質量 k : ばね定数 衝突直後から小球Bがはじめて壁面に最も近づい たときまでに移動した距離は,小球Bがばねを最も 押し縮めたときのばねの自然の長さからの縮みと考え ればよい。その距離をXとして、衝突直後に小球B が水平右向きに速さ”で動き始めたときとばねを も押し縮めたときについて力学的エネルギー保存の v = Aw= A√ Am (上の+α!のの式を代入) m よって, A=20 √ k (第二

回答募集中 回答数: 0
物理 高校生

星マークの部分の解説がなく分かりません。 答えは近くに書いてあります。お願いします

バ ム (1) 水平面に達したときの物体の運動エネルギーは何Jか。 図のように、 なめらかな曲面と水平面がつながっている。 水平面から 高さ0.20mの曲面上に、 質量 0.50kgの物体を置き、静かに手をはな す。 物体は水平面上に達し、 一端が固定されたばね定数49N/mのばね を押し縮めた。 重力加速度の大きさを9.8m/s2 とする。 曲面上での運動とばねについて、以下の各問いに答えよ。 【思考・判断・ 表現 】 0.20m xF=kx² 2ばねの縮みの最大値は何mか。 Imv- 0.5 A.0.20m 0:20x ×0.5 9.8 4.9 (3) ばねの縮みがx 〔m〕 のとき、 物体の弾性力による位置エネルギー [J] との関係を表す グラフを、以下の選択肢から最も適当なものを選べ。 04970 0 09 ア U(J) 0 x (m) イ U(J)↑ 0 x(m) [J]↑ 098. 98710 0 0.98 x (m〕 10 力学的エネルギーの変化について、以下の各問いに答えよ。 【知識】 図のように、質量mの物体を、 水平面から高さんのなめらかな斜面上から、静かにすべらす。 物体は、長さLの粗い水平面を通り過ぎ、同じ傾斜をもつなめらかな斜面上を、高さまで上がった。 重力加速度の大きさをgとする。 2 (1) 動摩擦力が物体にする仕事を求めよ。 mgh (2) 時間が経過すると、 物体は粗い水平面を往復し、いずれ静止する。 物体が静止する位置の、 粗い水平面上の左端からの距離を求めよ。 (3)右側の斜面だけ、 傾斜を大きくしたとき、 物体が静止する位置は、(2)と比べてどうなるか。 以下の選択肢から最も適当なものを選べ。 ア. やや左側 イ, 同じ位置 右側 物 77410 m <問題は以上です。>

回答募集中 回答数: 0