学年

教科

質問の種類

物理 高校生

問3番解説の日本語がよく分かりません。H大きくなるとLも大きくなるからと思ったらなんか色々違うみたいでよく分かりません。

AさんとBさんはHをある一定の値にして, んの値が 10.0cm, 15.0cm, 20.0cm, 25.0cm んとHの測定値から予想されたLの値(理論値) も示してある。 表1のんの値は糸の長さよりも小 の四つの場合について実験を行い,Lの測定値を表1にまとめた。 表1には, 問2の方法により, さいとする。 ThH H 表 1 g L〔cm〕 h[cm] 測定値 理論値 10.0 36.2 34.6 15.0 44.0 42.4 進んで 20.0 49.8 48.9 25.0 55.1 54.7 とき D 問3 表1の実験結果では,Lの測定値が理論値よりも大きい。この結果について,AさんとBさ んは次の(ア)~(ウ)のような誤った操作を行ったことが原因だと考えた。 (ア)~(ウ)の操作のうち,Lの 測定値が理論値より大きくなる原因となりうるものはどれか。すべて選び出した組合せとして最 も適当なものを、後の①~⑧のうちから一つ選べ。 13 L=2VWH (ア) Hの値を正しい値よりも大きめに測定した。 (イ)んの値を正しい値よりも大きめに測定した。 (ウ) た。 図2の矢印の向き(糸と垂直で上向き)にわずかに速度を与え 点Pでおもりを放すときに、 速度 おもり P 図2 ①(ア) ④ (ア)(イ) (ア)と(イ)と(ウ) ②(イ) ⑤(イ)と(ウ) ③ (ウ) ⑥ (ア)と(ウ) ⑧ 原因となりうるものはない

解決済み 回答数: 1
物理 高校生

(2)でなぜ「-1」をする必要があるかわかりません

図のSは任意の波長入の単色平行光線をとり 出せる光源,Hは光の半分を通し残り半分を反射 する厚さの無視できる半透明鏡, M1,M2 は光線 に垂直に置かれた平面鏡である。 Sから出た光は Hで2つの光線に分かれる。ひとつはHを透過 し M1 で反射したあと, Hで反射し光検出器Dに 達する。他方はHで反射したあと, M2 で再び反 射してから,Hを透過しDに達する。 Dではこの 2光線の干渉が観測される。 装置は真空中に置か れているとして、 以下の問いに答えよ。 S O H M25 (1) M1,M2 が図の位置のとき, 光源からDに達する2光線の間には光路差 (光学距離の差) はなく, 2光線が強め合っている。 この位置から M2 を鉛 直下方に距離だけ平行移動すると,やはり強め合うのが観測された。 を波長入および整数で表せ。 (2)図の位置からM2 を一定の重力の中で自由落下させ, Dで光の強め合い を検出した。落下し始めた瞬間の強め合いを1回目とし、時間後にN 回目の強め合いが検出された。 重力加速度g を入, t, N で表せ。 なお、落 下中 M2 の面は傾かない。 (3) M2 を図の位置 (10) に戻して, Hと M1 の間に屈折率 n=1.5, 厚さ d=2.5×10 〔m〕 の薄膜を入れたとき, 波長 入1 = 0.50×10[m]で強め 合っていた。ここで,光源Sの波長をゆっくりと増やしていくとDの干渉 光は一度弱くなるが,ある波長 入になると再び強め合う状態になった。 波長が変わっても屈折率は変化しないとして,入2 を求めよ。 (千葉大)

解決済み 回答数: 1
物理 高校生

物理のエッセンスの力学の問題について質問です。 (2)の運動量保存の式ではmv+MV=mv0とされていますが、衝突後のMの速度は最終的に0になると言う認識でいいのでしょうか?? また、もしそうならば滑らかな床であるのにも関わらず速度を持った物体が静止する理由を教えて頂きたい... 続きを読む

①+M×② (m+M)v'= (m-M) ひ1+2Mv2 V₁ = (m-M)v₁+2Mv2 m+M ①mx② 11/12M2=1/2x2 力学 17 M . x=V √ k 3mvo M 2(m+M)V k ちなみに v= 2m-M 2(m+M) v < 0 となる (M+m)v2′'=2mv+(M-m)vz V₂ = 2mv,+(M-m)v₂ m+M 問題の図では, はじめのP,Qの速度 が右向きに描かれているが, どんなケー スであれ,この結果は通用する。 M=mのときは,U1'02,02′'=v とな って、速度の入れ替わりが起こる。 ただ, 「等質量」で「弾性衝突」 という二重の条 件が必要であることを忘れないように。 78 (1)e=0 は完全非弾性衝突ともよ ばれ, 衝突後の速度差が0, つまり一体 化する(ひっつく) ケースである。 衝突直 後の両者の速度をとすると mv=m+M)より v= m m+M -Vo このときの運動エネルギーがばねの弾性 エネルギーに変わっていくから (m+M) v² = 1½ ½ kx² m+M mvo .. x=0 からは左へはね返っている。 79 M v m V +0000000 れきぜん 速さをv, Vとする。 (速度にしない のは向きが歴然としているため) 運動量保存則は mv=MV ... ① 力学的エネルギー保存則は ......② 11/21k=1/2m+1/2 MV22 ①のVを②へ代入し m2v2 |\ {kl²=\/\mv²+ 2M =1/2m0(1+77) M kM v=l m(m+M) k √k(m+M) 衝突の直前・直後を力学的エネルギー 保存で結ぶことはできないが, 衝突後は みきわ 成り立つという見極めが大切。 (2) 衝突後のm, Mの速度を v, Vとす る。 mv+MV=mvo v-V=-(0-0) ①mx② より 3m この場合,「物体系はどれとどれ?」 と尋ねると,「P と Q」 という答えが圧倒 的だ。 それでは, ばねの力が外力として 働いてしまう。 それでも, ばねの力はP Q に対して, 逆向きで同じ大きさな ので,外力の和が0ということでセーフ なのだが, 「P と Q とばね」 を物体系と とらえるとよい。 ばねの力は内力 (グル ープを構成するメンバー間の力)となっ て気にならないし, ばねには質量がない ので,運動量は常に0 で, 保存則の式に 顔を出してこない。 80 V=- 2(m+M) -Vo 今度は板だけがばねを縮めていくので 最も高い位置にきたかどうかは,台 上の人に判断させればよい。 その人が見 てPの速度が0になったときにあたる。

解決済み 回答数: 1
物理 高校生

「カ(カタカナ)」についてです。 答えは下に書いてある通りなのですが、gが下向き、aが上向きの力だと思ったのでg+aでなくg-aになると考えました。 何が間違っているのか教えてください🙇‍♀️

4 次の文中の |内に入れるべき答えを記せ。 ぴぴ²=2ax 図のように、エレベーターの床面の上になめらかな斜面と水平面があり、斜面の上 に小球(質量m[kg]) がある。 ↓↑ (1) エレベーターが静止している場合につ いて考える。 重力加速度をg [m/s2] とすれば,斜面 上にある小球が初速度0[m/s] で高さ [m]だけ斜面をすべり落ちるときに失う 位置エネルギーはアである。 また, 2=0 P点を通過するときの小球の速度を V1m/s] とすれば,そのときの小球のも Ta P QL つ運動エネルギーはイである。これらの関係式から、小球の速度はV1=ウ となる。さらに,小球がP点から水平方向に飛びだして高さん〔m〕だけ落下し, Q点 から距離がL] [m]だけ離れた床面上の点と接触した。 小球がP点を飛びだしてから床 面と接触するまでの時間はエであるから,小球が床面と接触する点までの距離は, L=オ となる。 アmgh mgh=1/2 イ I sigh t=L, h = £ge": L 20 t V₁ = 2gh オ √22h 2h (2)エレベーターが一定の加速度 a 〔m/s2〕 (0<a<g)で上昇する場合について考える。 斜面上にある小球が, 初速度0[m/s] で高さん [m]の斜面をすべり落ちた後にP 点を通過するときの速度は,エレベーター内の観測者から見るとV2=カである。 さらに,小球が速度 V2 で P点から飛びだし, Q点から距離がL2〔m〕だけ離れた床 面上の点と接触した。 小球がP点を飛びだしてから床面と接触するまでの時間は キであるから,小球が床面と接触する点までの距離は,L2=クとなる。 (3)前問 (2)において, 小球がP点から飛びだした瞬間に、エレベーターが同じ大き さの加速度で下降する場合 (すなわち加速度が-a 〔m/s2] となる場合)には,小球 が床面と接触する点までの距離は, L3=ケである。 また, L=2L2 となる場合のエレベーターの加速度は, a=コである。 カ V2=2h(gta)

解決済み 回答数: 1
物理 高校生

壁と衝突しても速さが変わらないのはなめらかで摩擦がないからだという解釈で合ってますか?それともただ単に反発係数について何も言われてないからですかね?🙏🏻

か 7/13 入試問題研究 ら壁に向けてボールを発射した。ボールは壁に衝突してはね返り, さらに床上の点で 図に示すように, 水平な床と鉛直な壁がある。 壁から距離だけ離れた床上の点Pか はずんだ。 壁はともになめらかであるとして以下の問いに答えよ。 ただし, 重力加速度の大きさは ボールは点Pから初速D で、 水平方向と角0をなす方向に発射されたものとし、床と gとする。 Q (1)ボールが点Pで発射されてから壁に衝突するまでの時間はどれだけか。 K)ボールが点Pで発射されてから点 Q に達するまでの時間はどれだけか。気づくこと) (3)角45°,ボールと壁およびボールと床の間の反発係数(はねかえり係数)の 大きさがともに0.5であるとき、ボールは点Qではずんだ後, ちょうど点Pにもどっ てきた。ただし、反発係数が0.5とは、壁や床に垂直な方向に衝突直前の速さの 0.5倍 の速さではね返るということである。 (ア)点Pにもどったときのボールの速度の大きさ,および水平方向となす角はどれだ けか。 (イ)の大きさはどれだけであったか。 gと1を用いて表せ。 (ウ)PQ間の距離は1の何倍か。

解決済み 回答数: 0