学年

教科

質問の種類

物理 高校生

(3)は何で、20mになるんですか? y=19.6まではできたんですけど、何で20になるか分かりません。 有効数字3桁じゃないんですか?

落下 -s), g 15 20 10 30 25 5 20 15 10 5 きさを g〔m/s²] 位をy[m]とする とおくと, 鉛直投げ上げ運動は次式で表される。 v = Vo - gt 1 291² y = vot- 鉛直投げ上げ運動 v (m/s) ●v[m/s] 速度 (velocity), [ 〔m/s) 初速度 (velocity), ●y [m] 変位, ●g 〔m/s²]: 重力加速度の大きさ (gravitational acceleration) v²-vo²=-2gy 19 17 [s]: 時間 (time), 18 Vo O y, Do Vo, a = - g 最高点まで の変位 (傾き- g 最高点から の変位 v = vo-gt 例題 8 鉛直投げ上げ運動 小球を地面から初速度 19.6m/sで真上に投げ上げた。 次の問い に答えよ。 ただし、重力加速度の大きさを9.8m/s2 とする。 (1) 1.0s 後の小球の速度はいくらか。 (2) 1.0s 間の小球の変位はいくらか。 (3) 最高点の地面からの高さはいくらか。 (4) 3.0s 後の小球の速度はいくらか。 解 鉛直上向きを正の向きとする。 (1) 式図7にvo = 19.6m/s, g = 9.8m/s, t = 1.0s を代入して, v=19.6m/s - 9.8m/s2 × 1.0s = 9.8m/s (2) 式区にv=19.6m/s, g=9.8m/s2, t = 1.0s を代入して, y = 19.6m/s × 1.0s - x 9.8 m/s² x (1.0s)² = 14.7 m 1 2 t(s) (3) 式19にv=0m/s, v = 19.6m/s, g = 9.8m/s² を代入して (0m/s) (19.6m/s)2=-2x 9.8m/s2 x y y=19.6m (4) 式図7にv=19.6m/s, g=9.8m/s2, t = 3.0s を代入して, v=19.6m/s - 9.8m/s2 x 3.0s = -9.8m/s ・vo POINT ・鉛直投げ上げ運動の特徴: 最高点での速度はv=0m/s. ▲図2 鉛直投げ上げ運動 Note 等加速度直線運動の関係式 v = vo + at 8 9 x = vot+ 1/12/0 v² vo² = 2 ax 19.6m/s Note 最高点では, 速度は 0m/sとなる。 at² 10 容 (1) 上向きに 9.8m/s (2) 上向きに15m (3)20m (4) 下向きに 9.8m/s 1節運動の表し方 23

解決済み 回答数: 2
物理 高校生

(3)のニが分かりません。 普通に1×Qじゃだめなんでしょうか?

166 2021年度 物理 次の文章を読み, ほ 答欄にマークせよ。 い 立命館大学部個別 (理系) イ に適切な数値を解答欄に記入せよ。 また, には指定された選択肢からもっとも適切なものを一つ選び、解 図1のように xyz軸を取り, 一辺の長さがLの正方形で厚さが無視できる導体板 A,B をそれぞれx = 0,x=d (ただしd>0)の位置に固定した。 導体板Aは 接地されており, 導体板Bには電気量Q(ただし Q > 0) の電荷が与えられてい る。また、以下の〔1〕〔2〕〔3〕 において、導体板や誘電体の中心は常にx軸 上にあり, 正方形の各辺はy軸、z軸と平行であるとする。 真空の誘電率をe とし, Lはdよりも十分大きいものとする。 ろ 〔1〕 図1において, 座標 (d-r,r, 0) に点P, 座標 (d,r,0)に点Rを 取る(図2)。ただし,0<r<d0<r</1/2であるとする。点Pでの電場 の向きは であり,大きさは である。 このとき, 導体板B の 電位を Vo とすると, Vo = は であり, 導体板 A,Bの間に蓄えられる静 電エネルギーを U とすると, U = に である。 また, 外力を加えて電気 量 g の点電荷を図2の原点Oから点R まで線分OR上をゆっくりと動かすと き, 外力がする仕事は ほ に等しい。ただし, |q| はQに比べ十分小さい とする。 〔2〕 図1において, さらに導体板 A,Bと同じ形状, 大きさを持ち,接地された 3 導体板Cをx=no dの位置に固定した (図3)。 十分な時間が経過した後,導 2 体板 B の電位は ×V となる。 また, 導体板 A,Bの間に蓄えられる 静電エネルギーは ×U となり,導体板 B, Cの間に蓄えられる静電 ×U となる。 エネルギーは 〔3〕 図1において、 今度は一様な比誘電率3を持ち, 断面が一辺の長さLの正 d 方形で厚さの誘電体 (絶縁体)で導体板 A を完全に覆った (図4)。 誘電体 では、誘電分極によってその表面に電荷(分極電荷)が現れ、誘電体内部の電 場を弱めるはたらきをする。 比誘電率を考慮すると,図4の「表面D」に現 れる分極電荷の電気量は = ×Qとなることがわかる。 また, 十分な時

未解決 回答数: 1