学年

教科

質問の種類

物理 高校生

(1)についてです。弾力性による位置エネルギーを使って解いてますが、なんでk部分(緑のマーカー部分)が100とわかるのでしょうか。

例題26 保存力以外の力の仕事 ・66,67 解説動画 点Aを境に左側がなめらかで右側があらい水平面がある。 点A より左側のなめらかな水平面上で, ばね定数 100N/m のばねの一 端を固定し,他端に質量 1.0kgの物体を置く。 ばねを0.70m だけ 縮めて手をはなすと, 物体はばねが自然の長さになった位置でば ねから離れた。重力加速度の大きさを 9.8m/s2 とする。 -0.70m→ 1[m]. B あらい水平面 自然の長さ (1) 物体がばねから離れるときの速さは何m/sか。 物体はばねから離れた後右に進み,点Aを通過して点Bで停止した。 (2)物体とあらい面との間の動摩擦係数が0.50 のとき, AB間の距離は何mか。 指針 (2) 力学的エネルギーの変化=動摩擦力がした仕事 (W=-Fx) 解答 (1) 最初に物体のもつ弾性力による位置エネル ギーはU=1/23 ×100 × 0.702 J ばねから離れた後に物体のもつ運動エネルギーは K= 1/2×1.0×[J] ている 力学的エネルギー保存則より 0+1/2×100×0.702=1/12×1.0×2+0 ゆえに v=√100×0.702=7.0m/s (2) 動摩擦力が物体にした仕事は W=-0.50×1.0×9.8×l = -4.97 [J] 物体の力学的エネルギーの変化 = W より -×1.0×0²+x1.0×7.02=4.9l 7.02 ゆえに1= -=5.0m 2×4.9

解決済み 回答数: 1
物理 高校生

これの(3)がわかりません。

403 ころ、 の電 sin wt, EL 影響で送電先の電圧が送電元の電圧より大きくなることがあり問題。 物理 例題 91 交流のベクトル表示 物理 基礎 物理 406 抵抗R, コイルL, コンデンサーCを直列に接続し、 電圧の実効値が20Vの交 流電源に接続したところ、 実効値2.0A の電流が流れた。 この場合のLのリアク タンスを20Ω, Cのリアクタンスを15Ωとする。 (1) LとCの電圧の実効値 Vre [V], Vce 〔V] を求めよ。 (2) 電圧のベクトル図より, 電源の電圧に対する電流の位相の遅れ [rad〕 と, 抵 抗にかかる電圧の実効値 VRe 〔V〕 を求めよ。 (3) 電源電圧 V [V] 時刻f[s] を用いて V=20√2 sin 100t と表されるとき 電 [流I[A] を式で表せ。 3.14 とする 解答 (1) 交流の角周波数をw 〔rad/s], ● 138 センサー 電圧に対する電流の位相 ・抵抗→同じ。 ・コイル→だけ遅れる。 電流の実効値を I [A], Lの自己インダ クタンスをL[H], C の電気容量を C[F] とすると,VLe = wLI=20×2.0= 40[V] VLe+Vce 40V 1 120V ・コンデンサー Vce= - I = 15×2.0= 30[V] wC 10V VRe →だけ進む。 センサー 139 RLC 直列回路の交流のベ クトル表示 (電流ベクトルを右向きに 描くとすると) ・抵抗にかかる電圧 VRe は 右向き。 ・コイルにかかる電圧 Vre は上向き。 ・コンデンサーにかかる電 圧Vce は下向き。 ・電源電圧 V は, Ve=VRe+ Vie+Vce センサー 140 (2) 共通に流れる電流I を右向きのベクト ルとし、反時計回りを位相の進む向き とすると,Rにかかる電圧 VRe の位相は 電流と位相が同じなので右向きに描く。 Lにかかる電圧 VLe の位相は電流より位 π 30V Vce 相が今だけ進むので右図の上向きに描 く。Cにかかる電圧Vcの位相は電流よりも位相が今だけ遅 2 れるので上図の下向きに描く。 電源の電圧の実効値 V は, 数学的にVe=Vre + Vre+ Ve となることから,各ベクトルの 大きさを考えると, 上図のようになる。 この図より Vre+ Vcel = 10[V] となる。 よって, sinθ= | Vie + Veel_10. | Vel =0.50 20 π これより,0= - 〔rad〕 ......① 6 交流回路の瞬時値は,最大 値と位相を別々に求める。 π *te, VRe = V COS =20x 2=10√3=10×1.73=17.3 2 注 電圧や電流の最大値や位相 TRO 17(V) [ 29 などは, ベクトル表示による方 法でなくても、公式を用いて計 算で求めることができる。 (3) 電源の電圧の最大値を Vo [V], 電流の最大値を I〔A〕とす ると,V=Vosin wt のとき, I=Isin (wt-0) と表されるから, ①II より 最大値と位相を考えると, I= 2.0√2sin100㎖t- 6 29 交流と電磁波 255

回答募集中 回答数: 0
物理 高校生

五番の回答が2個あるのは後を見すえてでしょうか? また、六番も分かりません

6 加速度運動 5. 方投射と自由落下等加速度直線運動〉 同時に動きだした2つの小球の衝突について考える。 図1、図 2のように、水平方向右向きに。 鉛直方向上向きにy軸をと る。時刻10 で 原点Oから小球Pをx軸の正の向きから角 (0°<8<90°)の向きに、速さ(0) で投げ出す。 ここでは 反時計回りを正とする。 重力加速度の大きさを」として、次の間 いに答えよ。 ただし、小球はxy面内でのみ運動し、空気抵抗は ないものとする。 まず。 図1のように小球を投げ出すと同時に、 小球Qを 標 (a,b)から静かに落下させた。ただし、40b>0 とする。 (1) 投げ出した小Pが小球Qと衝突するまでの時刻におけ る小球Pの座標を求めよ。 (2) 投げ出した小球Pがによらず小球Qと衝突するための tan を求めよ。 次に、 図2のように, 原点を通り軸の正の向きから角 (0°<a<90°傾けた、なめらかな斜面を設置した。 ただし, α は時計回りを正とする。 小球Qを原点Oに置き、 小球Pを投げ出 すと同時に小Qを静かにはなすと, 小球Qは斜面をすべり始め た。 小球 P h 18 a 図1 小球 Q 図2 小球 Q 小球 P 斜面 (3) すべり始めた小球Qが小球Pと衝突するまでの時刻における小球Qの座標を求めよ。 (4) 投げ出した小球Pが、によらず小球Qと衝突するための tan を求めよ。 6. <斜面への斜方投射> 図のように水平と角度 0 (0) をなす斜面上の原点O から、斜面と角度をなす方向に初連量の小 球を投射した。 原点から斜面にそって上向きにx軸を. 斜面から垂直方向上向きにy軸をとる。 斜面はなめらか で十分に長いものとする。 重力加速度の大きさを」とし、 空気抵抗はないものとする。 また、角度0とは <8+α < 21/2の関係を満たすものとする。 〔23 富山県大〕 (4) 小球が斜面と衝突する時刻を求めよ。 (5) 小球が斜面と衝突する点の原点からの距離を求めよ。 (6)距離が最大となる角度αを求めよ。 小球が斜面に対して垂直に衝突した場合について考える。 (7)角度αと8の関係式を求めよ。 (8) 小球が斜面に衝突する直前の速さをを用いて表せ。 7. 〈斜面をのぼる小球の運動> 水平な面(下面)の上に、高さんの 水平な平面(上面)が斜面でなめらか につながっている。 図に示すように x.y.y軸をとり、斜面の角度はx軸方向から見た断面 である。 下面上でy軸の正の向きに 軸とのなす角を0. として、質量 mの小球を速さで走らせた。 な お, 0 <6<90° かつ0 とし、小球は面から飛び上が 力加速度の大きさをgとし、 斜面はなめらかであるとす 次のアイに入る最も適当なものを文末の ウクに入る数式を求めよ。 (1) 斜面をのぼりだした小球は、x軸方向にはア る。 小球が斜面をのぼりきって上面に到達したとき ウy成分の大きさはエ(のぼりきる前 また、斜面をのぼり始めてから上面に到達するまでに 小球の進む方向とy軸とのなす角度を とすると, なる。 (2) 初速度の大きさを一定に保ちながら, 0, 0 さいうちは小球は上面に到達した。 しかし. 8, があ ずに下面にもどってきた。 このときのの満たす 0.0 のとき小球が斜面をのぼり始めてから再 クである。 ア イの選択肢 時刻における小球の位置のx座標, y座標を示せ。 時刻における小球の速度の成分 成分を示せ。 小球を投射した時刻をt=0 とし, 小球が斜面に衝突するまでの運動について考える。 小球にはたらく重力の成分 成分を示せ。 ① 等速度運動 ②加 ③ 加速度 -g cos の等加速度運動 ④ 加 ⑤ 加速度 α- sin 9 の等加速度運動 ⑥ 加 加速度 α- 9 tano この等加速度運動

回答募集中 回答数: 0
物理 高校生

高校物理です。2番の解説でなぜ三平方と√二乗-二乗をするのか分かりません。普通に公式の→V ab =→V b-→V aではダメなのですか?

ACCESS a. E | 1 1 導入問題 平 205 関連 p.8 導入, p.17 導入 ① 【平面上の速さ】 xy 平面上で運動する物体の速度のx成分が6.0m/s, y成分が 8.0m/sであるとき,この物体の速度の大きさ(速さ)は何m/sか。 に 北 ② 【相対速度】 A の速度vA, B の速度vBが図のようであるとき,」 Aに対するBの相対速度 VAB はどちら向きに何m/s か。 VA (4.0 m/s) 南 124 (5.0m/s) 平 得られる。つまり,観測者Aの速度を相手の物体Bの速度を UB とすると, Aに対するBの相対速度 VAB は,(13) 式のように表される。 コシ [link] 映像 相対速度 → UB UB VAB UAB = UB - UA (13) B VA 5 A [m/s] 物体 A(観測者)の速度 A vB [m/s] 物体B (相手)の速度 VA UAB [m/s] A に対するBの相対速度 第1編 力と運動 【12. 導入】 / 基本 180 12 平面上の運動 | 導入問題 (本誌p.107) | 1速度のx成分は 6.0m/s, y成分は8.0m/sであるので、求める速 度の大きさ v[m/s] は,u=√ux2+vy2 から, v=√6.02+8.02=10m/s 0.8 限を 答 10m/s ●v=√6.02+8.02 2 ABの向きは南向きであり、その大きさ VAB [m/s] VAB は,三平方の定理から, VAB2+4.02=5.02 よって, VAB=√5.0-4.0=3.0m/s AB=UB-UA から, UAEは右の図のようになる。北 (4.0m/s)=36+64 = =√100=10m/s UB (5.0 m/s) 箸 南向きに 3.0m/s ② VAB=√5.0-4.0 =√(5.0+4.0)(5.0-4. 水皿 =√9.0=3.0m/s

解決済み 回答数: 1