学年

教科

質問の種類

物理 高校生

この問題のボイルシャルルの問題はなぜ、A+B=ABみたいにしてるのですか? 186番の問題ではA=ABみたいにボイルシャルルで作ってるんです。どなたか教えてください

●センサー 60 単原子分子の理想気体のと 3 5 き, Cy=-R,C,== 2 例題 44 気体の混合 容積 6.0×10-3m²の断熱容器 A の中には 1.5×10 Pa, 300Kの単原子分子の理想気体容積 3.0×103m²の断 熱容器Bの中には4.5 ×10°Pa 270 K の単原子分子の理 想気体が入っている。 コックを開いて両方の気体を混合 し,十分に時間がたった後の圧力p [P.]と絶対温度 T [K] を求めよ。 ●センサー 61 全体の体積が不変 (仕事が 0) 断熱のとき, 内部エネ ルギーは保存される。 122 第Ⅱ部 熱力学 (3) 単原子 UA+UB=U 閉じ込めた気体では,物質 量が保存される。 NA+NB=n 3 AU=nCyAT=nRAT[J] 2 (4)(1)~(3)より,Q=4U+W(熱力学第1法則 ) M=90×8=0.W=0(どこも押し動かしていないので仕事は より, AU=0である。 H PAVA DBVB_D(VA+VB) + RTA RT 207212 3 3 3 3 2 PAVA+PBVB = P(V₁ + V₁) V より. -U==nRT= RT (1.5 ×10) × (6.0×10 - 3 ) 300 (2.5 ×10) × 16.0 × 10-3 +3.0×10-3) T ゆえに,T= 2.8×10 [K] B り Nik RT (4.5 ×10) x (3.0×10-3) + 270 23 A (1.5 × 10%) × (6.0 × 10~) + (4.5 × 105) × ( 3.0×10-3) =p(6.0x10-3+3.0 × 10-3) ゆえに, p= 2.5×10°[Pa] mol)の単 この体の定モル状態 (2) 体脂定で量QU〕を加 (3) 圧力一定量Q0) を加 FF 206 等護変化 気体の温度 縮したこのとき、気体は 気体の混合絶対温 の入りはないものとす EURST 201 V=nRT

解決済み 回答数: 2
物理 高校生

この問題の解説なんですが、解説右側の6行目の右辺の分母がV’になる理由がわかりません。 はじめにフラスコ内にあった空気の質量の何倍かを問われているなら、はじめにフラスコにあった体積Vを分母にもってくるのではないのですか?

子の分子量を28, アボガドロ定数を 6.0×1023/mol, 気体定数を 8.3J/ (mol (1) 窒素分子1個の質量は何kgか。 (2) 7℃における窒素分子の二乗平均速度は何m/sか。 √249 5.0 として計算せよ。 (3) (2) の速さの窒素分子1個が, 容器の壁に垂直に弾性衝突をしてはねかえるとき, 壁に与える力積の大きさは何N・sか。 (4) 窒素分子が,(3)と同じ条件で容器の壁に衝突する。 1.0×10 Pa(1気圧)の圧力が 生じるためには、壁の面積1m²あたりに、毎秒何個の窒素分子が衝突すればよいか。 ヒント (2) 二乗平均速度√は、気体定数をR,絶対温度をT,アボガドロ定数を 例題 39 NA,分子1個の質量をmとして、ア と表される。 発展例題24 ボイル・シャルルの法則 「発展問題 297 口の開いたフラスコが,気温 〔℃〕, 圧力 p, [Pa] の大気中に放置されている。このフ ラスコをt〔℃〕までゆっくり温めた。次の各問に答えよ。 18 (1) このとき, フラスコ内の空気の圧力はいくらか。 (2) 温度が t〔℃〕 から t〔℃〕になるまでに。 フラスコの外へ逃げた空気の質量は,はじ めにフラスコ内にあった空気の質量の何倍か。 SKE 指針 一定質量の気体では,圧力か,体積 pV V, 温度 T の間に, =一定の関係 (ボイル・ シャルルの法則) が成り立つ。 フラスコの外へ逃 げた空気も含めて, この法則を用いて式を立てる。 解説 (1) フラスコは口が開いており, 大気に通じているので, フラスコ内の空気の圧 力は大気圧に等しい。 したがって〔P〕 (2) フラスコの容積をV[m²] とし, 温める前の [℃], pi [〔P〕,V[m²]のフラスコ内の空気が、 温めた後, t〔℃〕, p [Pa], V'[m²] になったと する。 ボイル・シャルルの法則の式を立てる と. 3RT Nam DIV 273+t₁ P₁V' 273 + t2 273+t2_ 273+t₁ これから, V' = VX フラスコの外に逃げた空気の体積 ⊿Vは, t₂-t₁ 4V=V'-V=Vx 273+₁ AD 温める前にフラスコ内にあった空気の質量を m, 外に逃げた空気の質量を⊿m とすると, 4m AV が成り立ち , V' m Am m VX VX - 273+t₁ 273+tz 273+t₁ t₂-t₁ 273 + t2 倍

回答募集中 回答数: 0
物理 高校生

①と②の問題で「ゆっくり加熱」や「ゆっくり冷却」とありますよね。②では定圧変化ですが、③ではそうとは限らないそうですが、これはなぜですか? またこれはピストンが仕切られているか仕切られてないかは関係しますか?

EC M/ B ARTA (20) 19 図のように両端を密閉したシリンダーが,なめら かに動くピストンで2つの部分 A, B に分けられて おり,それぞれに単原子分子理想気体が1〔mol] ず つ入れられている。 シリンダーの右端は熱を通しやすい材 料で作られているが,それ以外はシリンダーもピストンも断熱材で作られている。は じめの状態では,A, B内の気体の体積は等しく, 温度はともに To 〔K〕 であった。 次 はりあり に、 右端からB内の気体をゆっくりと熱したところ, ピストンは左向きに移動し、最終 的にA内の気体の体積はもとの半分になり,温度は T 〔K〕 になった。 気体定数を R[J/(mol・K)] として,以下の問いに答えよ。 仕切 (1)この変化の過程で,A内の気体が受けた仕事は何〔J〕か。 (2) 変化後のA内の気体の圧力は最初の状態の何倍になったか。 (3) 変化後のB内の気体の温度は何 [K] になったか。 (4) この変化の過程で, B内の気体が外部から吸収した熱量は何〔J〕か。 B 図のような2つの円筒容器 1,2, コックで連結さ (京都府大 ) 断面積S

回答募集中 回答数: 0
物理 高校生

青線の部分意味がわかりません。どういう基準で符号を変えているのか?なんでイコールになるのかわかりません。

AU 熱量を加えた K)か の気体の る。 AU を加えたとこ エネルギーの 0 積が増加し こと気体に加 0 co U -3.0x 仕事をする 上がった 気体 例題42 下図のように、物質量が一定の理想気体をA→B→C→A と状態変化させた B→C は等温変化であり, A での絶対温度は300K であった。 (1) B での絶対温度 TB [K] と C での体積 Vcm〕 を求め 715 B (2) A→Bの過程で,気体が吸収した熱量は QB=9.0×10° [J] であった。 気体が外部にした仕事 WAB [J] はいくらか。 また, 気体の内部エネルギーの 変化AUAB 〔J〕はいくらか。 13Cの過程で,気体が外部にした仕事はWic = 9.9×10'[J]であった。気体の 内部エネルギーの変化AUBC 〔J〕 はいくらか。 また,気体が吸収した熱量 Qwe [J] pV=一定などを用いて求める。 はいくらか。 (4) GAの過程で、気体が外部にした仕事 Wea [J] はいくらか。 また,気体の内 部エネルギーの変化 AUc 〔J〕, および気体が放出した熱量 Qca〔J〕 はいくらか。 CA SP 気体が状態変化したときのか,V,Tの求め方 ボイル・シャルルの法則 PV 定理想気体の状態方程式がV=nRT, = T T' センサー 55 ボイル・シャルルの法則 pV_p'V' T T p 〔Pa〕* 3.0 X 105 SP 気体が状態変化したときのQ, W, AU の求め方 状態変化の種類によって成り立つ関係式が異なるので, 注目する状態変化が定積 変化, 定圧変化, 等温変化, 断熱変化のどれかを確認し, まとめの式 (p.119) を用いる。 -=一定 センサー 56 定積変化のとき, W = 0 1.0×105 ●センサー 57 等温変化のとき, AU=0 A₁ C 0 0.030 Vc V[m³] 【センサー 58 定圧変化のとき,W=pAV (1) ボイル・シャルルの法則より (1.0×10)×0.030_ (3.0×10) x 0.030__ (1.0×10 ) × Vo 300 TB To また、B→Cの過程は等温変化だから, TB = Tc ゆえに, TB = 9.0×102〔K〕,Vc = 9.0×10^2[m²]| (2) 定積変化だから, WAB = 0 [J] である。 熱力学第1法則より, AUAB=QAB-WAB=QAB-0=9.0×10°〔J〕 (3) 等温変化だから,4U.Bc=0[J] である。 熱力学第1法則より, QBC=AUBC+WBC=0+WBc = 9.9×10°〔J〕 (4) C→Aの過程で気体が外部にした仕事は, WcA=pAV=1.0 × 10 x (0.030-0.090) = -6.0×10°[J] また, A→B, CA の過程での温度変化を, それぞれATAB. ATCA とするとATeATAB 気体の内部エネルギーの変化は温変化に比例するので, そ の比例定数をすると. AUcA=kATcA=-KATAB = -4UAB = -9.0×10°[J]| 熱力学第1法則より, 気体に加えられた熱量 Q'cA [J] は, Q'CA=4UcA+WcA= -9.0×10°-6.0×10°= -1.5×10'[J] よって, Qca = 1.5×10'〔J〕 14 14 気体の状態変化 121

解決済み 回答数: 1
物理 高校生

物理重要問題集より単振動です 写真の4).5)青線部分の2はどこからでてきたのですか? 教えて欲しいです

A 必解 52. <2本のばねによる単振動〉 図のように,なめらかな水平面上に質量mの物体Pが同 じばね定数んをもった2つのばね A, B とばねが自然の長さ にある状態でつながっている。 水平面上右向きにx軸をとり, このときの物体Pの位置をx座標の原点とする。 物体PをばねAのほうへ原点Oよりaだ けずらしてからはなす。 このとき物体Pは単振動する。単振動は等速円運動のx軸上への正 射影の運動であるといえる。 時刻 t=0 において、物体Pはちょうど x座標の原点Oを正の 向きに向かって通過した。 ばねの質量はないものとして、次の問いに答えよ。 (1) 時刻t における物体Pの位置xおよび速度を等速円運動の角速度を用いて表せ。 (2) 時刻t において物体Pが位置xにあるときの加速度αを, ω と x を用いて表せ。また,2 つのばねAとBから受ける力Fを, kとxを用いて表せ。 B 1000 P P800000 120 (3) 物体Pが x = α に達してから, 初めて原点を通過するまでの時間 to と, 初めて x 12/24を通過するまでの時間を,kとmを用いて表せ。 (4) 物体Pの運動エネルギーKの最大値とそのときの位置, およびばねの弾性力による物体 FELS ULL Pの位置エネルギーUの最大値とそのときの位置を表せ。ただし,ωやTを用いないこと。 pl (5) 物体Pが単振動しているときの速度と位置xの関係を求め, vを縦軸に,xを横軸にと ってグラフに示せ。このとき座標軸との交点を,a,kおよびm を用いて表せ。 また,物 体Pが時間とともに図上をたどる向きを矢印で表せ。 [香川大 改〕

未解決 回答数: 1
物理 高校生

(5)番なんですがN>=0は分かるのですがそれ以降が分かりません。わかりやすく教えて欲しいです。

31 鉛直方向への物体の単振動 ばね定数kのばねを鉛直に立て, 床に固定する。 (1 ねの上端に質量mの薄い板Bを取りつけ,板の上 00 に質量 M の小球 A を乗せると,自然長からだけ縮 B- んで静止した。このつりあいの位置をx=0 として, 鉛直上向きにx軸をとる。 また, 重力加速度の大きさ をg とする。 (1) ばねの縮みαを求めよ。 & DUH 次に板 B をつりあいの位置から、さらに6(>0) だけ下げて静かに放すと, AとBは一体となり単振 動した。 (2) 小球 A と板Bの単振動の周期を求めよ。 (3) 位置 x における,小球Aの速さを求めよ。 (4) 小球 A が板 B から受ける垂直抗力N をxの関数として表せ。 MOO AUSSE 出題パターン (5) 小球Aが板 B から離れないの条件を求めよ。 516100-2 .. a= 折り返し点は速さ0で静かに放し た x = - b と,振動中心に対して対 称の位置にあるx=bo 自然長はx=a の点。 102 漆原の物理 力学 解答のポイント! さぶ A,B間に働く垂直抗力をNとして, A, B それぞれの運動方程式を立て, N を求めAがBから離れる 垂直抗力N=0を用いる。 magn 下向きにとるこ 解法 (1) 問題文の図で,力のつりあいより, (M+m)g=ka M+m ① k 単振動の解法3ステップで解く。 (1+0) S** STE | 1 x軸は与えられている。 DRS STEP2 振動中心は、つりあいの(自a 位置x=0の点。 g Baiepm x1 (中) 0x a+ 上 Lau T-e ポイント!! 今後の式変形に,この式を フル活用することになる。 必ず向きを そろえる AV Spreeeeee da at, af Mg mg 図9-8 2000円 A k(a-x) B IN 「縮み a-x (1+0)S STEP3 図9-8のように, 加速度をα, A,B間の垂直抗力をNとす ると,図9-8 より A,Bの運動方程式は, (1+n)S

解決済み 回答数: 1