学年

教科

質問の種類

物理 高校生

至急です!!🚨 自動車Aと自動車Bの速度が同じ大きさだと、車間距離は変化せず保たれたままになるのはなぜですか? 回答よろしくお願いします🙇‍♀️

例題 5.19 t(s) 5,19 8.0 s] リード D 速度 (m/s) 物体B 19 等加速度直線運動のグラフ■以下の文章を読みに適当な数値を入れよ。 一直線上を物体Aと物体Bが同じ向きに運 動しており、この向きを速度や加速度の正の 向きとする。 物体Aと物体Bの速度と時刻の 関係は右図で示される。 また, 時刻 0sにお ける物体Aと物体Bの位置は同じであるもの とする。 物体Aの加速度は m/s² であ O り、物体Bの加速度は は 4 時刻 (s) m/s2 である。 時刻 2s において、物体Aと物体Bの距離 2 第1章 運動の表し方 エ S である。 また, その時刻において, 物体Bに対する物体Aの相対速度は m/sである。 [19 名城大〕 時刻 0sの後, 物体Aと物体Bの位置が再び同じになる時刻は mである。 B 13 物体 A 20 等加速度直線運動 列車が一定の加速度α [m/s'] で一 [1] 直線上を走っている。 A地点を列車の前端は速さ [m/s] で u 通過した。また, A地点を後端が通過したときの速さは [m/s]であった。 (1) この列車がA地点を通過するのに要した時間 t [s] を, a, u, v を用いて表せ。 (2) この列車の長さ 1 [m] を, a, u, vを用いて表せ。 (3) この列車の中点がA地点を通過したときの速さ [m/s] を, u, vを用いて表せ。 ➡13, 14 ヒント 19 (エ) 求める時刻を t [s] として, AとBの移動距離についての方程式を立てる。 20 列車がA地点を通過する間に, 列車はその長さだけ進んでいる。 オ 15,16,17 A 21 等加速度直線運動 直線上の高速道路を 速さ 24.0m/s で走っていた自動車Bの運転手は, 前方に低速の自動車Aを発見し, ブレーキをかけ て一定の加速度で減速し始めた。 ブレーキをかけた瞬間を時刻 t=0s とすると, Bは t=2.0s に速さ18.0m/sになった。 1501. 一方,速さ 8.0m/sの等速で進んでいたAはt=2.0s の瞬間からアクセルを踏んで 一定の加速度で加速し始めた。 その結果, t=4.0s のとき, 車間距離は最も短くなって 5.0mとなり,衝突をまぬがれた。 A,Bの進行方向を正とする。 (1) まずBの加速度 αB 〔m/S²] を,次にAの加速度 αA [m/s'] を求めよ。 (2) t = 2.0s の瞬間のAとBの車間距離 1 [m] を求めよ。 u

回答募集中 回答数: 0
物理 高校生

(1)力学的エネルギー保存則を使って答えは解いていて、 運動エネルギーの変化=全ての力がした仕事 を使って解いてみたのですが、答えが会いません、 なぜダメなのか分からないので教えて欲しいです

基本例題 25 保存力以外の力の仕事 点Aを境に左側がなめらかで右側があらい水平面がある。 点Aよ り左側のなめらかな水平面上で, ばね定数 100N/m のばねの一端を 固定し、他端に質量 1.0kgの物体を置く。 ばねを0.70mだけ縮めて て手をはなすと、物体はばねが自然の長さになった位置でばねから 離れた。重力加速度の大きさを9.8m/s²とする。 ①日まだ離れてい (1) 物体がばねから離れるときの速さは何m/sか。 物体はばねから離れた後右に進み, 点Aを通過したのち点Bで停止した。 の選 (2) 物体とあらい面との間の動摩擦係数が0.50 のとき, AB間の距離は何mか。 指針 (1) 弾性力 (保存力) による運動では力学的エネルギーは保存される。 (2) 力学的エネルギーの変化=動摩擦力がした仕事 (W=-Fx) (1) 力学的エネルギー保存則より 0+1/12 ×100×0.70²=1/1/2×1.0×v²+0 ゆえにv=√100×0.702= 7.0m/s (2) 動摩擦力が物体にした仕事は W=-0.50×1.0×9.8xl = -4.91〔J〕 mmmmm 第5章 仕事と力学的エネルギー 53 070m 手を離前の 22 (1) it 01/ 2 ゆえに 1=- 自然の長さ 7.02 2×4.9 C 物体の力学的エネルギーの変化 = W より ×1.0×0°/12×1.0×7.0°= -4.9l -=5.0m ►►► 60,61 -1(m) A あらい水平面 最初に加経度を まれていた 運惑方程式も VEC

解決済み 回答数: 1
物理 高校生

⑴なのですが、距離が5mとして計算されている理由が分かりません。OQ+QP+PQが距離だと思ってしまいます... 教えてください。質問の意味が分かりにくかったら言ってください💦

発展例題2 等加速度直線運動 斜面上の点Oから, 初速度 6.0m/sでボールを斜面に沿 ONE 指針 時間t が与えられていないので、 「v²-v2=2ax」 を用いて加速度を求める。 また, 最高点Pにおける速度は0 となる。 v-tグラフ を描くには、速度と時間との関係を式で表す。 解説 (1) 点 0, Qにおける速度, OQ 間 の変位の値を 「v²-v2=2ax」 に代入する。 (−4.0)²-6.02=2×a×5.0 a=-2.0m/s2 って上向きに投げた。 ボールは点Pまで上昇したのち、下 降し始めて, 点0から5.0mはなれた点Qを速さ 4.0m/s 速さ 4.0m/s で斜面下向きに通過し, 点Oにもどった。 この間, ボール は等加速度直線運動をしたとして, 斜面上向きを正とする。 (1) ボールの加速度を求めよ。 LOSUHO SAY^82A (2) ボールを投げてから, 点Pに達するのは何s後か。 また、OP間の距離は何mか。 (3) ボールの速度と, 投げてからの時間との関係を表す グラフを描け。 (S) (4) ボールを投げてから, 点Qを速さ 4.0m/sで斜面下向きに通過するのは何s後か。 また, ボールはその間に何m移動したか。 v[m/s〕↑ J16.0 0 SUTA - 4.0 - 6.0 085.0m 発展問題 24, 25,26 1 23 P TUTS MU 60m/s. 550GS OP間の距離 KOBRAJ PQ間の距離 4 25 6t[s]

解決済み 回答数: 1