学年

教科

質問の種類

数学 高校生

とあるYouTuberの方のやり方で解いたのですが、この回答だと模試または定期テストで減点されますか?もしされるのであればどこがダメなのか教えてくださいm(_ _)m

646 基本 例題 38 ベクトルの終点の存在範囲(1) 動くとき,点Pの存在範囲を求めよ。 AOAB に対し, OP =sOA+tOB とする。 実数s, tが次の条件を満たしながら 00000 (2) 3s+t≤1, s≥0, t≥0 (1)s+2t=3 そこで,「係数の和が1」 の形を導く。 + ▲ = 1 なら直線 MN 指針 OP=OM + ▲ON で表された点Pの存在範囲は ●+A=1, 0, P.640 基本 基本 例題 39 ベクトルの終点の存在範囲(2) △OAB に対し, OP = sOA+ FOB とする。 実数s, tが次の年 動くとき、点Pの存在範囲を求めよ。 (1) 1≦s+t≦2, s≧0, t≧0 (1) 基本例題 38 (2)同様, st=k OP= 00 (1)条件から1/28+1/31=10P=1/28(30)+1/2/20 (1) A(1.0)、B(0.1)とする。 → (2) 3s+t=k ...... ①とおき,まず (0≦k≦1) を固定して 3s t ①から ·=1 3s k また、OP=4200+1/2OR (226 k k k と、点Pは線分 QR上にあることがわかる。 次に,kを動か B を見る。 80 0 する A 3 s+2t=35 解答 MAC (1)s+21-3から1/3s+1/31-1 -t=1 3 satu+B-A0-10 また +A3 OP-s(30A)+(OB) (20-80) A OB (2) 1s≤2, Ost≤1 を固定し 020, S+2t=3をてについて解くと、 1/2st/2となり、図で 表すと、左のようになる。 よって、点々の存左範囲は、 30A- OA OB=OB' = の動きを見る。 そこでまず 20, B とすると、直線ABである。 A kOA ゆえに、点Pの存在範囲は, + 30A B' B 30A=0A, OB=OB' & OPD)-40 と, 直線A'B' である。 A' (2) 3s+t=kとおくと A 0≤k≤1 k=0のとき,s=t= 0 であるから, 点Pは点0に一致する。 3s t t 0<k=1のとき +1/2=1.2 20.1/20 kk, 3S k t OP=3(OA)+(KOB) 3s また (2) Q = 3 k AOA ROBOB' とすると,kが一定のとき点P = は線分A'B' 上を動く。 ここでAOC とすると, = (2)A(1.0)、B(0.1)とする。 3s+tsをもの範囲で表すと、 t-3s+1 B さらに5:00だから、Pの存在 範囲を図で表すと、左の図のようになる。 B 認可とすると OB 点Pの存左範囲は、 B' 0≦k≦1の範囲でkが変わるとき 点Pの存在範囲は △0CB の周 および内部である。 A' AQ A △OCBの同および内部 A B と

解決済み 回答数: 1
数学 高校生

この問題についてで、解答と最初の計算は合っているのですが、途中から違ったように計算していて、写真の式の最後のところで、log0になってしまったのですが、変形が間違っているということですか?それともこれでは計算出来ないから違う方法で計算しなければいけないということですか?回答... 続きを読む

思考プロセス 例題] どの箱に入る確率も等しいとする。 どの箱にも1個以下の球しか入ってい 個の球を2個の箱へ投げ入れる。各所はいずれかの箱に入るものとし log n ない確率を pm とする。 このとき, 極限値 lim n→∞ n を求めよ。(京都大改) « ReAction 確率の計算では、同じ硬貨・ さいころ 球でもすべて区別して考えよ 例題214 段階的に考える まずを求める Dn = n個の球は区別して考える。 (__となる場合の (異なるn個の球が2n個の箱に入る場合の数) = ( 積や指数を含む式) 区別したn個の球を 2n個の箱からn個の箱 を選んで入れる入れ方 9A « Re Action n項の積の極限値は、対数をとって区分求積法を利用せよ 例題 172 33 x b (x) t n個の球が2n個の箱に入る場合の数は (2)" 通り どの箱にも1個以下の球しか入らないようなn個の球の入 り方は 2P通り 球は区別して考える。 2n個の箱から,球を入れ n個の箱を選び、どの が入るか考える。 球は区別して考えるから 気 よって 2nPn kn === (2n)" を使う時 ゆえに (2m) A のいつけないと(0) 2n log pn C ではなく 2P であ る。 lim lim n→∞ n 2mPm 間違う。 n -log- non (2n)" (2n) (2n-1)(2n-2). lim non lim -log 2n log + log 1/{10 n→∞n 2n ... (2n) n {2n-(n-1)} 2n-2 2n-1 + log 2n 2n ・+log. 2n-(n-1) 2n nie lim 1n-1 n→∞nk=0 = = lim non log 2n-k 2n log 2 n k=0 )= log(1-x)dx =[-2{(1-1/2x)100(1-1/2)-(1-1/2x)} = 10g2-1 ■1741からnまでの粘 = logxdx Slogx =xlog.x-x+c -log- 1

解決済み 回答数: 1
1/289