学年

教科

質問の種類

物理 高校生

(2)の問題がわかりません。 2枚目写真が私の回答なのですが、考え方が違うと思います。 どこが間違っているか教えていただきたいです。 なぜ経路差が1だと二分のλになるのでしょうか? よろしくお願いします🙇‍♀️

20 例題 3 音の干渉 動かし, 波形の振幅の変化を調べよう。 15 図のように、 2つのスピーカー A, B が, 同位相 で振動数 1.7 × 102Hzの音を出している。 音の速 さを 3.4 × 102m/s とする。 ■ A 3.0m (1)音の波長 [m] を求めよ。 B (2) 点Pは,音が強めあう点か, 弱めあう点か。 4.0m 指針 (2) 2つのスピーカーは同位相の音を出すので,距離の差 AP-BP| が 「波長の整数倍」 のときは強めあう点、 「波長の整数倍+半波長」 のときは弱めあう点になる。 解 (1) 「v=fi」 (p.141 (1) 式) より 3.4 × 102 = (1.7 × 102 ) × à よって 1=2.0m (2) 問題の図より BP = 4.0m また, 三平方の定理より AP = √3.02 + 4.0° = 5.0m よって |AP-BP|=1.0m=14121 ゆえに、点Pでは,スピーカー A, B からの距離の差が 「波長の整数倍 +半波長」になり、 音波が逆位相で重なりあうので、 弱めあう点となる。 類題 3 図のように、2つのスピーカー A,Bが, 逆位相 A T で振動数 8.5×10°Hzの音を出している。 音の速 1.0m B さを3.4×10m/s とする。 点Pは, 音が強めあ...... 2.4m

解決済み 回答数: 1
物理 高校生

(ウ)の問題で L進めむごとに立方体の側面に衝突すると思うのですがなぜ1往復で1回しか衝突しないのですか?

247 気体分子の運動 一辺の長さLの立方体の容器に質 量m (kg単位) の気体分子がN個入っている。 図のように座標軸 をとるとき 以下の文中のに適当な式を入れよ。 (1) 1個の分子が図のなめらかな壁面Aに x方向の速度成分 vx で 弾性衝突したとき,分子の運動量の変化はアなので,壁 面Aに与える力積はイである。この分子は時間の間に ウ 壁面Aと衝突するので,この分子によって壁面Aが 受ける平均の力の大きさはf=エである。 24 L A (2) 全分子の速度の2乗の平均値を三平方の定理を用いて各成分の2乗の平均値で表 すと2x2+vy2+v22 であり, 等方性より全分子は平均的に2 ので,エを用いてN個の分子が, 壁面Aに与える力をを用いて表すと F=オ となる。したがって,壁面Aにはたらく圧力はp=カである。 (3)状態方程式 V =nRTとカを比較すると,分子1個の平均運動エネルギー Eはアボガドロ定数 N (物質量 n=N/Na),気体定数R, 絶対温度T を用いて表す ととなる。ここでN個の分子の質量が分子量Mo (g単位)であること を考慮すれば,キより分子の二乗平均速度は, Mo, R, T を用いて ク と表される。 例題 44259 '

解決済み 回答数: 1
物理 高校生

高校物理です。2番の解説でなぜ三平方と√二乗-二乗をするのか分かりません。普通に公式の→V ab =→V b-→V aではダメなのですか?

ACCESS a. E | 1 1 導入問題 平 205 関連 p.8 導入, p.17 導入 ① 【平面上の速さ】 xy 平面上で運動する物体の速度のx成分が6.0m/s, y成分が 8.0m/sであるとき,この物体の速度の大きさ(速さ)は何m/sか。 に 北 ② 【相対速度】 A の速度vA, B の速度vBが図のようであるとき,」 Aに対するBの相対速度 VAB はどちら向きに何m/s か。 VA (4.0 m/s) 南 124 (5.0m/s) 平 得られる。つまり,観測者Aの速度を相手の物体Bの速度を UB とすると, Aに対するBの相対速度 VAB は,(13) 式のように表される。 コシ [link] 映像 相対速度 → UB UB VAB UAB = UB - UA (13) B VA 5 A [m/s] 物体 A(観測者)の速度 A vB [m/s] 物体B (相手)の速度 VA UAB [m/s] A に対するBの相対速度 第1編 力と運動 【12. 導入】 / 基本 180 12 平面上の運動 | 導入問題 (本誌p.107) | 1速度のx成分は 6.0m/s, y成分は8.0m/sであるので、求める速 度の大きさ v[m/s] は,u=√ux2+vy2 から, v=√6.02+8.02=10m/s 0.8 限を 答 10m/s ●v=√6.02+8.02 2 ABの向きは南向きであり、その大きさ VAB [m/s] VAB は,三平方の定理から, VAB2+4.02=5.02 よって, VAB=√5.0-4.0=3.0m/s AB=UB-UA から, UAEは右の図のようになる。北 (4.0m/s)=36+64 = =√100=10m/s UB (5.0 m/s) 箸 南向きに 3.0m/s ② VAB=√5.0-4.0 =√(5.0+4.0)(5.0-4. 水皿 =√9.0=3.0m/s

解決済み 回答数: 1
1/23