学年

教科

質問の種類

数学 高校生

√1+f(x)'の公式に当てはめて解いたのですが、回答の答えにはなりませんでした。これでは解けないのでしょうか?教えて頂きたいです。よろしくお願いします。

(5)) 2sin/128-tcos/1/2 (s)tsin/1/2 1 (6) (L) 12 (6XL)*+* 2 ■解説 ≪媒介変数表示された曲線の形状と長さおよび面積≫ =0とおくと, sin00 (π<< より 00 dy sin O (1)・(2) dx 1 + cos 0 このときy=0である。 また, -π<< πにおいて よって, 曲線Cは点 (0,0)においてx軸に接する。(→(あ) (レ dx de から,g(-π) <x<g(x)より =1+cos0 >0よりx=g(0) は単調増加だ dy さらに, de x=(→(う)(え)) -=h' (0)=sin0より,y=h(0) の増減表は次のようになる。 0≦y<2 (→(お), (カ)) 1 + 0 7 これより (020g+1) なお, 曲線Cの概形は次のようになる。 O 2 2 0.200 大阪 dy d0-> 2cos2d0-4sin-4sin (4) Pr(t+sint, 1-cost) 0=1のとき 方程式は sint = 1+cost y-(1-cost) - do (-4431) sint dt 1+cost であるから、もの (x-(t+sint)) (0<K<x) ここで,y=0とおくと, (1-cos't) =sintlx-(1+sin()), sint*0より よって -(1-cos³t) sint +(t+sint) =-sint+ (t+ sint) =t (→()) Qi(t. 0) =OP-OQ Q.P= = (t+sint, 1-cost) - (t, 0) = (sint, 1-cost) 2. =(2sin/12 cos/122sin2-12) = 2 sin 27 (cos 27. sin 172) ...... ① 0 (-π) 0 (π) dy nie. 0 do Ob y 2 となるので、Q.P がx軸の正の向きとなす角は 12 ラジアン( 10203-1 0 (-π) ... 20 x 一π x y 2 π (π) 0 V 0 V π 2 とする。また,P, Q 接線がそれぞれPi, Q 接線に移動した (5) 回転する前のC上の点Pがx軸との接点になったときの曲線をC とする。このとき t OP' = L (t) = 4 sin 2 dx (3) + do (d)² = (1 + cos 0)² + (sin 0) 2 =2(1+cos0)=4cos' 0≧≦t<zにおいてcos->0であるから 20 8-2 ①よりP/Q=PQ=2sin であるので OQ=OP-P/Q=4sin/2-2sin/2 = 2 sin/20 また,Q,R, OQtであることと,(4)の結果より

回答募集中 回答数: 0
数学 高校生

C'がx軸と異なる点で交わることを確認していなくてもax^2+2(a+1)-3a+1=0を解の公式で解けばxには2つの解があることを分かると思ったのですが、なぜ確認しなければならないのですか?

EXERCISES ②76 αは自然数とし, 2次関数y=x2+ax+b (1) b=1のとき, ①のグラフがx軸と接するのはα= のときである。 (2) b=3のとき, ①のグラフがx軸と異なる2点で交わるような自然数αの中で, α<9 を満たすαの個数は である。 [類 センター試験] 101.102 の値は である。 (一 12 グラフと2次方程式 ③77 aは定数とする。 関数 y=ax²+4x+2のグラフが,x軸と異なる2つの共有点をも つときのαの値の範囲は x軸とただ1つの共有点をもつときのa であり, as 1 batc>u51E ①のグラフを考える。 ) -102 ③78 2次関数y=ax²+bx+cのグラフをCとする。 C をx軸方向に3,y 軸方向に5だ け平行移動したグラフをCとする。 C を表す 2次関数が y=ax²+ (2a+2)x-3a+1であるとき (1) b,c を α で表せ。 (2) C'がx軸から切り取る線分の長さが19であるとき, αの値を求めよ。 -103 [京都学園大] ②79 (1) 放物線y=-x²+2(k+1)x-k² が直線y=4x-2と共有点をもつような定数k の値の範囲を求めよ。 (2) 座標平面上に、 1つの直線と2つの放物線 L:y=ax+b, C1:y=-2x2, C2:y=x²-12x+33 がある。 L と C およびL と C2 が, それぞれ2個の共有点をもつとき アロα2イロロー□<b<a²が成り立つ。ただし, a>0とする。 [ (2) 類 近畿大] <->105 77654197) *#${[85x5\>u! ③802 次関数y=ax2+bx+cのグラフが, 2点(-1, 0),(3,8) を通り, 直線y=2x+6 に接するとき, a, b,c の値を求めよ。 [日本歯大] ➡105 169 3章 12 グラフと2次方程式

回答募集中 回答数: 0
数学 高校生

(3)では-17.61に一番近い整数が-18だから-kを-18としているのですか?

ゆえに,小数第18位 に初めて0でない数字が現れる。 (1) log105, logio0.006, logiov72 の値をそれぞれ求めよ。 常用対数を利用した桁数, 小数首位の判断 OOOO0 フリ退 logio2=0.3010, logio3=0.4771とする。 285 (2) 60 は何桁の整数か。9 2 100 140 Ap.284 基本事項 [1, 2 指針>(1) 底は 10 で, logio2, logio3 の値が与えられているから,各対数の真数を2,3, 10の累 を小数で表すと,小数第何位に初めて0でない数字が現れるか。 /0 139 乗の積で表してみる。 | なお, logio5の5は5=10-2と考える。 (2), (3) まず, logio6°, logio( 21100 )を求める。別解あり 一解答編p.181 検討参照。 3 正の数Nの整数部分がん桁→R-1<loginN<k 正の数 N は小数第k位に初めて0でない数字が現れる→-k<logoNく-k+1 5章 32 常 用 対 はたライト少佐 CHART 桁数,小数首位の問題 常用対数をとる桁を政を 数 解答 『 (1) logio5=logio 10 =logio10-logio2=1-0.3010=0.6990 (logio10=1 重要 logu5=1-logu2 この変形はよく用いられる。 N, logio0.006=logio(2-3-10-)=logio2+logio3-31ogiol0 =0.3010+0.4771-3=-2.2219 logioV72 =log.o(2°-3°)を=(31ogio2+21ogio3) 4/A=A 今(3×0.3010+2×0.4771)=0.9286 = (2) logio60=501og1o6=501og.o(2-3)=50(logio2+logio3) =50(0.3010+0.4771)=38.905 (2) 10'SN<10*+1 ならば,Nの整数部分は (を+1)桁。 ゆえに 38<logio650<39 したがって,650は 39 桁の整数である。 よって 10く650<1039 =100(log1o2-1ogio3)=100(0.3010-0.4771) 7.61 (3) 10-SN<10-*+1 ならば、Nは小数第 位 に初めて0でない数字が現 () (3) logio 2100 れる。 ゆえに -18<1og1o 2100 く-17 3 100 よって 10-18く <10-17 月対数を 3100 5 練習 0 1771とする。15'0 は 口桁の整数であり, N Cal

回答募集中 回答数: 0
数学 高校生

SとTは実数と示す必要はありませんか?

辺 OBを3:4に内分する点を D, 線分 ADと BC との交点をPとし、直線G 練習| A0ABにおいて, 辺OAを2:1に内分する点をL, 辺 OB の中点をM, BLと/ 24|| AMの交点をPとし, 直線 OP と辺 ABの交点をNとする。 OF, ONをOH 指針> (1) 線分ADと線分BCの交点PはAD上にも BC上にもあると考える。そこで, (2) 直線 OP と線分ABの交点QはOP上にも AB上にもあると考える。 OO000 ズーム UF 基本 例題24 交点の位置ベクトル(1) (類早稲田光 「重要 27, 基本38,6.、 ズー (2) OQ 注意 その (1) OP な AP: PD=s:(1-s), BP: PC=t: (1=) として, OPを2つのべ、そ ,5を用いて2通りに表す と, p.384基本事項 5から G+6, 5+0, axō(āとあが1次独立)のとき pa+qb=pa+q6=p=D, q=q' AP 表す につし さて、 が計算 CHART 交点の位置ベクトル 2通りに表し 係数比較 るから 解答 ここで (1) AP:PD=s: (1-s), BP: PC=t:(1-t) とすると - 1-t- OF=(1-s)OA+sOD=(1-s)ā+s5, これは をOA OF-10C+(1-00B-伝+(1-06 よって (1-)i+-5=a+(1-06 , 万ゃ0, axるであるから 1-s=81,5=1-t a このよ A として 補足 上 点 の断りは重要。J これを解いて -= (2) AQ:QB=u:(1-a)とすると 10 13 したがって OF=5 3 a+ 13 13' 13 よっ また,点Qは直線 OP上にあるから, OQ=kOP (k は実数) 0Q=(1-2)a+ub つま とすると,(1)の結果から 注意 解答 06=A+= ;kā+ よって(1-Ditu5-近+高話 ska+ u à+i. 5+0, àxōであるから 1-u=k, u=k なお s: なぜ, 例えば、 これを解いて =u=; 両辺の 13 13 ..の断りは重要。 9,U 1 したがって 0Q=a+g0 また,a= 3 数が等し (2 このよう OB を用いて表せ。 である。 補足 &キ0, 表され (類神戸

回答募集中 回答数: 0
数学 高校生

青チャート数IIBです。 (3)のかいせつがわかりません。もう少しわかりやすく教えていただきたいです。

(3) 直線 PQと直線 RS は交わり, その交点をTとするとき, OT をa, b, cで 四面体 OABC の辺 OA の中点を P, 辺 BC を2:1に内分する点をQ, 辺OCを OO000 2直線の交点の位置ベクトル 478 基本 例題63 |1:3に内分する点をR,辺 ABを1:6に内分する点をSとする。OR。 OB=6, OC=èとするとき (1) PQをà, 5, こで表せ。 O直線 PQと直線RS は交わり,その交点をTとするとき, ōTを, 表せ。 (2) R$ をa, b,cで表せ。 【類岩手大) 基本24 指針> (1), (2) PQ=0Q-OF, R$=OS-OR (差による分割) (3) 平面の場合(p.418 基本例題 24)と同様に, 5 0 00 交点の位置ベクトル 2通りに表し係数比較Jでの に沿って考える。点Tは直線 PQ, RS上にあるから, PT=uPQ (u は実数) RT=R$ (bは実数)として, OTをa, b, c で2通りに表し, 係数を比較する 解答 ュー-+る -a+6-0 1·+2c (1) PQ=00-OFー 2+1 aニー R 64+1·5 1: 3、 P。 (2) R$=OS-OR- さ。 H0×A0=3 D 1+6 4 (3) 直線 PQ と直線 RS の交点を T とする。 Tは直線 PQ上にあるから よって,(1) から A PT=uPQ(uは実数)つ iS B of-OF+uPG--(1-wā+u5+=u 0 2 -uc 3 Tは直線 RS 上にあるから ゆえに,(2) から RT=»R$ (vは実数)つ|1-)- oT-OR+ RS-Si++}(1-の) 6 「7 24点0, A, B,Cは同じ平面上にないから, ①, ②より AHA 2 4 の断りは重要。 1 3° 日2A17,AA0- (17 U= 3 4 第1式と第2式から 7 V=- U= これは第3式を満たす。 15 お期 日 よって, ①から OT=- IPO 6+ 2 15 15 6 1-2

回答募集中 回答数: 0
1/3