学年

教科

質問の種類

数学 高校生

①のところでなぜ不定積分をするのか。 ②のところでなぜCが消えるのか 教えてください🙇‍♀️

360 第5草 根 例題164 定積分の最大・最小(1) ***** 02mとする関数f(x)=ecostdtの最大偵とそのときのえの 値を求めよ. f'(x), f(x) を求め, [考え方] 増減表をかく ← 極値と端点での f(x) の値を調べる 解答 f(x) = ecostdt より、f'(x)=ecosx 兀 3 0≦x≦2m のとき,f'(x) = 0 とすると,x= *-22" 0≦x≦2 におけるf(x)の増減表は次のようになる. x f'(x) + 0 π 2π 320 32 20 + (北海道大) f(x)の最大値・最 小値を求める 2π A f(x) を求めるには、 分と微分の関係を用いる。 excosx=0, e≠0 kb, cosx=0 したがって、x= ex>0より, 三匹 3 2'27 COSx の符号がf(x)の f(x) (0) (1)(2)(2次) → 符号になる. x=2のときである. つまり,f(x)が最大となるのはx=277 または 7 例題 165 f(a)=S (1) f(a): [考え方] 積分 (1) (2) f 解答 (1){ arcostdt=f(ecostdt=ecost+fe'sintdt 練習 兀 1匹 2 =ecost+e'sint-Şecostdt 部分積分を2回行う. より Secostat=12e(cost + sint)+C 12, Secostdt を左辺に移 m したがって、f(x)=Secostdt = [1/2e(cost+sint)] 頭する. Telcosx je*(cosx+sinx)_1 =1 x=1/2のとき x=2のとき (2m)=/12/12=1/2( -1) ここで、 あ e* は単調増加で, Focu 2n> π 2 e²лez (21)=1201-12-12(11) 2. (1) より、f(2x)> よって, 最大値 1/2(2-1)(x2) |164| (1)関数f(x)=Se(3-t) dt(0≦x≦4) の最大値、最小値を求めよ。 *** (2)関数f(x)=(2-t)logtdt (1≦x≦e) の最大値、最小値を求めよ。 eat p.39126 練習 165 ***

未解決 回答数: 1
数学 高校生

(2)の解説でn+1/2{(2n+1)+1}というのはどこから来ましたか??公式はわかるんですが数字がどっから来たのか分からないので教えて欲しいです!!

基礎問 206 第7章 数 列 133 格子点の個数 3つの不等式x0,y≧02x+y=2n (nは自然数)で表さ れる領域をDとする. (1)Dに含まれ,直線 z=k (k=0, 1,..,n) 上にある格子点 (x座標もy座標も整数の点)の個数をんで表せ. (2) Dに含まれる格子点の総数をnで表せ. (別解) 直線 y=2k (k=0, 1, ..., n) 上の 格子点は (0,2k), (1,2k), ... (n-k2k の (n-k+1) 個. また,直線 y=2k-1 (k=1, 2,...,n) 上の 格子点は (0, 2k-1), (1, 2k-1), …, (n-k, 2k-1) の (n+1) 個. よって, 格子点の総数は y 2n 207 y=2k 精講 計算の応用例として, 格子点の個数を求める問題があります。こ れは様々なレベルの大学で入試問題として出題されています。 格子点の含まれている領域が具体的に表されていれば図をかいて数 え上げることもできますが,このように, nが入ってくると数える手段を知ら ないと解答できません. その手段とは,ポイントに書いてある考え方です。 ポイントによれば, 直線 y=k でもできそうに書いてありますが、こちらを 使った解答は (別解) で確認してください. k=1 (n-k+1)+(n-k+1) い k=0 k=1 y-2k-1 2-(n-k+1)+(n+1) n 0 '\n-k++ x =n(n+1)+(n+1) =(n+1)(n+1) 12群 =(n+1)2 第 注 y=2k とy=2k-1 に分ける理由は直線 y=k と2x+y=2n の交点を求めると,(カー1k)となり,n-1がkの偶奇によって 20 整数になる場合と整数にならない場合があるからです。 解答 (1) 直線 =k上にある格子点は 例)(24)だった場合 (k, 0), (k, 1),, (k, 2n-2k) 1 8 3 5 0 0 Wy For 2n x=k 24-2 ポイントある領域内の格子点の総数を求めるとき の (2n-2k+1 個. 2n-2k 注 座標だけを見ていくと, 個数がわかります. I. 直線 x=k (または, y=k) 上の格子点の個数を kで表す (2)(1)の結果に,k=0, 1, n を代入して すべ 0 Ⅱ.Iの結果について計算をする て加えたものが、Dに含まれる格子点の総数. y=-2x+7h = (2n-2k+1) =24721 第7章 ◆ 等差数列 2 +1{(2n+1)+1} 等差数列の和の公式 = (n+1)2 演習問題 133 注 Σ計算をする式がkの1次式のとき, その式は等差数列の和を表 k=0 k=0 ろん、Σ(2n+1)-22k として計算してもかまいません。 しているので,212 (atan) (12) を使って計算していますが,もち 放物線y=x2 ① と直線y=n² (nは自然数 ...... ② がある. ①と② で囲まれた部分 (境界も含む)をM とする. このと 次の問いに答えよ. (1) 直線 z=k (k=1, 2,...,n) 上のM内の格子点の個数をn, んで表せ. (2) M内の格子点の総数をnで表せ.

回答募集中 回答数: 0
数学 高校生

この解答の(1)(2)がなんでこうなるかわからないので教えて欲しいです!!

207 za 基礎問 206 133 格子点の個数 3つの不等式 x≧0, y≧0, 2x+y≦2n (nは自然数)で表さ れる領域をDとする. (1) Dに含まれ, 直線 x=k (k= 0, 1, ...,n) 上にある格子点 (x座標もy座標も整数の点) の個数をkで表せ。 (2) Dに含まれる格子点の総数をnで表せ . 精講 計算の応用例として, 格子点の個数を求める問題があります. こ れは様々なレベルの大学で入試問題として出題されています。 格子点の含まれている領域が具体的に表されていれば図をかいて数 え上げることもできますが,このように,nが入ってくると数える手段を知ら ないと解答できません.その手段とは,ポイントに書いてある考え方です。 ポイントによれば,直線 y=kでもできそうに書いてありますが、こちらを 使った解答は (別解) で確認してください. (1) 直線 x=k上にある格子点は (別解)直線y=2k (k=0, 1, ...,n) 上の 格子点は(0,2k), (1,2k), ..., n-k2k (n+1) 個. 注 2n y=2k また,直線 y=2k-1 (k=1, 2,...,n) 上の 格子点は n Oi-k 02k-1), (1,2k-1), ..., (n-k, 2k-1) (n+1) 個. よって, 格子点の総数は 2n (n+1)+(n-k+1) k=0 k=1 y-2k-1 2Σ(n-k+1)+(n+1) =n(n+1)+(n+1) =(n+1)(n+1) =(n+1)2 \n On-k+ y=2k と y=2k-1 に分ける理由は直線 y=k と 2x+y=2n の交点を求めると,(n-212 k) となり,n-1/2 がんの偶奇によって 整数になる場合と整数にならない場合があるからです。 解答 Y (k, 0), (k, 1), 2n x=k (k, 2n-2k) ポイントある領域内の格子点の総数を求めるとき の (2n-2k+1) 個. 2n-2k-- 注 y座標だけを見ていくと, 個数がわかります. (2)(1)の結果に,k= 0, 1, ..., n を代入して, すべ て加えたものが,Dに含まれる格子点の総数. 0 I. 直線 x=k (または, y=k) 上の格子点の個数を k で表す Ⅱ.Iの結果について Σ計算をする y=-21th .. (2n-2k+1) =24721 k=0 ◆ 等差数列 2 {(2n+1)+1} 等差数列の和の公式 演習問題 133 =(n+1)2 第7章 注 計算をする式がkの1次式のとき,その式は等差数列の和を表 しているので、12/27 (atan) (112) を使って計算していますが,もち ろん, 2n+1)-2々として計算してもかまいません。 k=0 k=0 放物線y=x2 ・・・ ① と直線 y=n² (nは自然数) ...... ② がある. ①と② で囲まれた部分 (境界も含む)をMとする.このと 次の問いに答えよ. (1) 直線=k (k=1, 2,...,n) 上のM内の格子点の個数をn, んで表せ 写真 (2) M内の格子点の総数をnで表せ.

回答募集中 回答数: 0
1/1000