学年

教科

質問の種類

数学 高校生

xが上端や下端にあるとき(与式のような時)そのまま積分は出来ないのでしょうか?もしそうであれば積分できない理由を教えてください。

360 第5章 積分法 例題 164 定積分の最大・最小 (1) ***** =e'costdt の最大値とそのときのxの 0≦x≦2m とする. 関数 f(x)=\ 値を求めよ. [考え方] f'(x), f(x) を求め、 ⇒ 極値と端点での 増減表をかく 解答 f(x)= =Secostat より 0≦x≦2 のとき, f'(x) =0 とすると,x= x=2* 2 TC πT 3 f(x) の値を調べる f'(x)=e*cosx (北海道大) f(x)の最大値・最 D 小値を求める xm における f(x) の増減表は次のようになる. f(x)を求めるには、 分と微分の関係を用いる excosx=0 e≠0 より, cosx=0 例題 165 f(a)=S( (1) f(a) t [考え方] 解答 (1) 積分 ST (2) f( (1){s より π x 0 f'(x) + f(x) f(0)1 20 ... 2π 2π 320 32 (1)(2) |+ したがって、x= 3 27 >0より COS x の符号がf(x)の A f(2π) 符号になる. つまり、f(x) が最大となるのはx=- x=/7/7または 2 x=2のときである. Secostdt=f(e')'costdt=ecost+fe'sintdt -e'cost+e'sint-Se'costat th(AS+ 部分積分を2回行う. よりSecostdt=12e(cost+ sint) + C したがって、f(x)=Secostdt=[2e(cost+sint) π =1/2e(cosx+sinx) 1 Secostdt を左辺に暮 頭する. e=1 2 (1-9)8-2= x=1/2のとき(1)=121203-12 1/2(21-1) x=2のとき、f(x)=12-1/2=1/12(6-1) ここで、よりf(2m)>f ( e* は単調増加で, AA2 SFERON 練習 よって 最大値 1/2(2-1)(x=2) 2π> より 2 [164] (1)関数f(x)=Se(3t)dt (0≦x≦4)の最大値、最小値を求めよ。 *** Andr (2) 関数 f(x)=(2-t)logidt (1≦x≦e) の最大値、最小値を求めよ。 p.391回 (2 Focus 練習 [165] ***

解決済み 回答数: 2
1/6