学年

教科

質問の種類

数学 高校生

(1)がわかりません 解説お願いします🙇‍♀️

基本 例題 432通りの部分和S2n-1, S2n の利用 1 1 1 無限級数 1- + 1 1 + + 2 4 2 3 3 4 75 00000 ・・・について ① (1) (1)級数①の初項から第n項までの部分和をSとするとき, S2n-1, S2 をそれ ぞれ求めよ。 (2) 級数① の収束, 発散を調べ, 収束すればその和を求めよ。 指針 (1) San-1が求めやすい。 San は Sun = Sui+(第2n項)として求める。 基本42 (2) 前ページの基本例題42と異なり,ここでは()がついていないことに注意。 このようなタイプのものでは,S" を1通りに表すことが困難で, (1) のように, San-1, S2n の場合に分けて調べる。 そして、次のことを利用する。 [1] limS27-1= limS2 = Sならば limS=S n→∞ n→∞ [2] lim S2n-1≠lim S2 ならば 110 n10 n→∞ {S} は発散 はり立つ。 "(+b) (1) S2n-1-1-- + 解答 Buta = 1 1 1 1 + 2 2 3 3 + 1-(12/28-1/2)-(13-1/3)-(一号) =1 n n+1 n n Job 部分和 (有限個の和) なら ( )でくくってよい。 参考 無限級数が収束す れば,その級数を、順序を 変えずに任意に() でく くった無限級数は,もと の級数と同じ和に収束す 1 1 S2n=S2n-1- =1- -2 n+1 n+1 (2)(1) から よって n→∞ したがって、 無限級数は収束して, その和は1 ることが知られている。 n→∞ 81U limS2n-1=1, limS2n=lim1- n→∞ limS=1 *** +*(1+2)--

回答募集中 回答数: 0
数学 高校生

2枚目画像のR(S=2)のところで、確率を求めている式の真ん中の3!/2!が何をしているのかがわかりません。教えてください。

第3問 場合の数 確率 【解説】 以下では, 東方向への移動を 南方向への移動を 西方向への移動を 北方向への移動を↑ とし,点Aから出発する経路と4種類の矢印の並べ方を対応さ せて考える.例えば,→→→ という並べ方に対しては次図の (a)の経路が対応し、という並べ方に対しては次図 の (b) の経路が対応する。 逆に,点Aから出発する経路を1つ定め ると,それに対応する矢印の並べ方が1つ得られる。 (コ) B B 「よりも左側に↓があるものの個数を考える。 まず、 、 、 の並べ方が, -=35 (通り) あり、その各々に対して4個の□への 1, 1, 1, ↓の配置の、 仕方が 4, 1, 1, ↑ *1, 1, 1. t 1. 1. L. 1 の3通りずつあるから, 北方向への移動を3回, 南方向への移動 を1回 東方向への移動を3回行うような移動の仕方の数は、 例えば、4個のと3の一の並べ 35通りのうちの1つとして。 ローローロー 35x3 105 (通り)。 四 南北の4枚のカードから無作為に1枚を引く 2 がある。 このとき、条件を満たすように 3の1と1個のを口へと配置す ることで. A (b) (1) 点Aを出発し, 5回の移動後に点Bにいる移動の仕方の数は 1. 1. →,,の並べ方の個数であるから, 5! = 10 (通り)。 2!3! 同じものを含む順列 (2) 点Aを出発し、7回の移動後に点Bにいる移動の仕方のうち、 点Cを通るものは、点Aから点Cに移動するまでに2回, 点 から点Bに移動するまでに5回の移動をすることになる。 点Aから点Cまでの移動の仕方の数は1の並べ方の個数 であるから. のもののうち、αが、 . が ...... あると これらのものを並べてでき 順列の総数は、 (通り) mimi (n=m₁+m+ +m₂) 2!=2 (通り)。 である。 この各々に対して,点Cから点Bまでの移動の仕方の数は 「. の並べ方の個数だけあるから, =5 (通り)。 よって, 点Aを出発し、7回の移動後に点Bにいる移動の仕方 のうち,点を通るものの数は, (通り). また北方向への移動を2回, 西方向への移動を1回 東方向 への移動を4回行うような移動の仕方の数は 1. 1.←→,→ →の並べ方の個数であるから, とき 引き力は4通りあり、これらはすべて同様に確からしい。 よって,, . 1.の移動が起こる確率はすべてである。 ただし、試行を行った点において、道がない方向のカードを引い た場合は移動ではなく Stay が起こる。 (3)点Aを出発し、5回の試行後に点Bにいるのは、 が2回, が3回起こる場合である。 (1)より,その確率は、 -1-1-11 [1] →1→1→ 11-1-1- の3通りの並べ方が得られる。 (4)( (4) 点Aを出発し、7回の試行後に点Bにいるような事のうち. Stay がちょうどk 回 k=0.2) だけ起こる事象をR(S=k) と す。 まず、R(S-2)のうち, D, を過るものについて考える. このとき、最初の2回の試行でDに到達する必要があるから、 が2回起こればよく、その確率は、 Stay がちょうど1回だけ起こると 残りの6回の試行では、7回の行に にいるように移動することができ ない。 また, Stay が3回以上起こると 残りの4回以下の試行ではBに することができない。 (+ さらに、残りの5回の試行で その事は、 が起これば試行でD, からBへ到するに (+)(4)-10(4) よって、 R (S2) かつ 「D, を通る」 確率は, 8. 105 (通り) ... 次に,R(S-2)のうち、D, を通らずにDを通るものについ て考える。 次に,f, f, f. 4.,,の並べ方のうち、3個目の このとき、最初の3回の試行でD, を通らずに D2 に到達する必 25- はが3回起こる必要があり、残りの2 回でStay. つまり「がない」が起 こればよい D, D, D, B

回答募集中 回答数: 0
数学 高校生

(2)の問題で解がともに1より小さいときなぜa-1+b-1が0より小さくなるのか理解できません またなぜa-1 b-1と置くのでしょうか

x2-4 x x x2-4 B 2 x-2 x X x ÷ x (x+2)(x-2) x-2 x 北 x-2 x × x-2 =x+2 よって (2) HC (x-1) xx4(x+2)(x-2) x- X 別解 B 2 x-2 1. 1- xx X x =x+2 x-2 3 2次方程式2mx+2m²-5=0が,次のような異なる2つの解をもつとき,定数の値の範囲を求めよ。 【重要】 (1) ともに1より大きい (2) ともに1より小さい この2次方程式の2解をα, B, 判別式をDとする。 1/2=(m)-1-(2m²-5)=m+5=-(m+√5)(m-√5) また,解と係数の関係により α+β=2m, aβ=2m²-5 (1) 方程式が条件を満たすのは,次が成り立つときである。 D>0で, AAI 直線 よ ①ゆよ y (-1)+(β−1)>0 かつ(α-1XB-1)>0 D>0より -(m+√5)(m-√5)>0√5 <<√5 ... ① また (α-1)+(β-1)=(a+β)-2=2m-2 (α-1)β-1)=αβ-(a+β)+1=(2m²-5)-2m+1=2(m-m-2)=2(m+1Xm-2) *E**** (α-1XB-1)>0より2(m+1Xm-2)>0 (−1)+(β-1)>0より 2m-2>0 よってm>1 よって効く-1,2m ③ ① ② ③ より 2<<√5 (2) 方程式が条件を満たすのは,次が成り立つときである。 D>0で, (-1)+(β−1)<0 かつ (α-1Xβ-1)>0 D>0より -√5cm<√5 (−1)+(β−1)<0 より 2m-2<0 よって1 (a-1X8-1)>0) m<-1, 2<m (3) ① ② ③ の共通範囲を求めて -√5 <<-1 次の3次方程式を解け 4x+8=0 P(x) =42+8 とすると P(2) =23-4-23+8=0 *** 0 -√5 -1 1 2√√5 m -√5-1 D- 12.5m x よって、P(x) は x2 を因数にもち P(x)=(x-2)(x-2x-4)

回答募集中 回答数: 0
数学 高校生

この辺の根本的な考え方から分かりやすく教えてもらえませんか。むらさき線のところが特に分からないです。Oでかこっているのは全部1ミリも分からないです。

に (1) 5. B 1 1 (1) DE//BCより AE DE D M AC BC 3 2 よって, BC=6(cm) 9 BC XC (2) ∠ABC= ∠ACD 02 2=α×4より,216a y=ax2 のグラフが、 点A(4,2)を通るから、 <BAC= ∠CAD (共通) より, 2組の角がそれぞれ等しいので △ABC∽△ACD よって, AB: AC=AC: AD 6AD=9 6:3=3 3 よって,a= 1/2 である。 AB=OB だから,△OABはAB=OB の二等辺 三角形である。 OA の中点をM (21) とすると, OBMは直 角三角形であるから OB2 = OM2+MB2 B(0, b) とすると, OB2=62 OM2+MB2=22+12+22+(b-1)2 =62-26+10 よって、62=62-26+10 これを解いて.6=5 よって、Bのy座標は5である。 J (2) ∠OBAの二等分線を1とすると, 1 は線分 OA の中点M(2,1) を通る。 よって、この傾きは-2である。 したがって, AD=2 (cm) (3)底面積は, 4×4=16 (cm²) 高さは, 体積は,1/23> -×16×3=16 (cm3) (4) BD=3cm, ∠ADB=90° だから, 三平方の定理より, AB2=32+42=25 AB>0より, AB=AC=5(cm) (5) 弧 BC に対する円周角より ∠BAC = ∠BDC=65° ∠AEB=180°(65°+15°)=100° また,切片が5より1の式は,y=-2x+5である。 (6) 11/113 π33=36 (cm3) πC (3)点Cは,y=1/2x2のグラフ上にあるから, c(t, 1/2)とおける。 2 (1) △ABCとAED において さらに,点Cは1上にもあるから, t=-2t+5 8 これより, =-16t+40 t²+16t-40=0 が成り立つ。 <BAC= ∠EAD (共通) 仮定より ∠ABC=∠AED ①,②より 2組の角がそれぞれ等しい △ABC∽△AED よって AB AE = AC: 6:AE=5:3

回答募集中 回答数: 0
1/175