学年

教科

質問の種類

数学 高校生

(2)の(ア)の解答のマーカー引いてある部分がなぜこの式変形になるのか教えて欲しいです

628 基本 28 内心、傍心の位置ベクトル 00000 (1)AB=8. BC=7,CA=5である △ABCにおいて、内心を1とするとき、 を AB, AC で表せ。 (2) AOAB において, OA=d, OB= とする。 別解 ベク とす (ア) を2等分するベクトルは,k ることを示せ。 (+) (kは実数, k≠0) と表され OA' 形O 点 C よっ (イ) OA=2,OB=3, AB=4 のとき, ∠Oの二等分線と ∠Aの外角の二等分 指針 線の交点をPとする。 このとき,OP を で表せ。 (1)三角形の内心は,3つの内角の二等分線の交点である。 次の「角の二等分線の定理」 を利用し, まずAD を AB, AC で表す。 右図で AD が △ABCの∠Aの二等分線 ⇒ BD:DC=AB: AC 次に, △ABD と ∠Bの二等分線BIに注目。 基本 26 (2)Oの二等分線と辺ABの交点をDとして,まずODを,で表す。 [別解] ひし形の対角線が内角を2等分することを利用する解法も考えられる。 つ まり, OA'=1, OB'=1 となる点 A', B' をそれぞれ半直線 OA, OB 上にとっ てひし形 OA'CB' を作ると,点Cは ∠Oの二等分線上にあることに注目する。 (イ)(ア)の結果を利用して, 「OPをa, で2通りに表し、係数比較」 の方針で。 AC=OA となる点Cをとり, (ア)の 点Pは∠Aの外角の二等分線上にある → 結果を使うとAPはa で表される。 OP = OA+APに注目。 (イ) 点 20 らっ OP AC と、 ZE よ a 0 解答 (1) △ABCの∠Aの二等分線と辺BCの交点をDとすると BD: DC=AB: AC=8:5 ZCの二等分線と辺 A ABの交点をEとし AE: EB=5:7, 5AB + 8AC 別解 よって AD= 10 13 8 15 EI:IC=:5 8 56 また, BD=7・・ であるから =2:3 A 13 13 56 B 7 D C AI: ID=BA: BD=8: -=13:7 このことを利用して もよい。 13 角の二等分線の定理 ゆえに 15 ゆえに 0D= |6|0A+|4|OB |a|+|6| AI=2AD=1.5AB+8AC-1AB+/AC 20 20 13 (2)Oの二等分線と辺AB の交点をDとすると AD: DB=0A: OB=||:|| を2回用いると求め られる。 角の二等分線の定理 を利用する解法。 検討 0 aba a+ba 61 + (2) 練習 (1) |4| D|6| ③ 28 (2 求めるベクトルは, t を t≠0 である実数としてtOD と表 ab される。 |a|+|6| t=kとおくと, 求めるベクトルは (+) (kは実数, k≠0) a A tOD=|al|b a+ba +

回答募集中 回答数: 0
数学 高校生

棒全部から下がわからないです。

□130 太郎さんと京子さんは,命題の証明に関する次の問題について話している。 【問題】 a b は実数とする。 このとき, 次の命題を証明せよ。 活用間 131 文 「a +6≦2 ならば, a ≦1 または 61である。」 小 太郎:この命題の対偶は証明できそうだね。 た 京子:そうだね。 この命題の対偶はアならば,イ」になる。 太郎: 対偶を証明する以外に,この命題を証明する方法はないかな。 京子:次のように考えてみたらどうだろう。 α+6≦2 のとき,a≦1であ るなら,この命題の結論は真になるから,この場合は考える必要がな い。 a+b≦2 で, さらにウであるときに, エであることを 証明すれば十分である。 京子 太郎 京子 太郎 : 確かにそうだね。 それなら,次のようにして証明できる。 【太郎さんのノート】 a + b≦2 より b≤2-a ここで,ウ であるとき したがって, ウ であるとき, エ となる。 (1) に当てはまるものを、次の各選択肢のうちから一つずつ選べ。 ア の選択肢 ⑩ a ≦1 または 6≦1 ① a ≦ 1 かつ 6 ≦1 ② a > 1 または 6>1 ③ a > 1 かつ 6>1 の選択肢 ⑩ a + b 2 である ① a+b>2 である ウ オに当てはまるものを、次の各選択肢のうちから一つずつ選べ。 選択肢 ⑩a > 1 ① a ≦1 I の選択肢 ⑩6 > 1 ① b≦1 の選択肢 ⑩ -α <-1 ① a ≧ - 1

回答募集中 回答数: 0
1/1000