学年

教科

質問の種類

数学 高校生

円と直線について質問です。 (2)のマーカー部分ですが、なぜk=-1とわかるのかがわからないです。 解説して欲しいです!よろしくおねがいします

展 2円の交点を通る直線や円を求める 2円 x2+y2-1=0 ...... ① とx2+y²-2x-2y+1=0 ..... 000 ②について ①円 (1) (1)2円の共有点の座標を求めよ。 (2)2円の共有点を通る直線の方程式を求めよ。 (3)2円の共有点と原点0を通る円の中心の座標と半径を求めよ。 CHART & GUIDE (1)2円の共有点の座標 ⇒ 連立方程式の実数解 解答 ①,②はともに2次→①,②の辺々を引いて, 1次の方程式を導く。 (2),(3)①②の共有点を通る図形の方程式を、次のようにおく。 k(x2+y-1)+(x2+y²-2x-2y+1)=0 (2)=1のとき、 この図形は直線を表す。 ***** (p.147 ズームUP) (3)この図形が原点を通るとして, x=0,y=0 を代入し,んの値を求める。 (1) ①-② から 2x+2y-2=0 ③①に代入して整理すると ゆえに x(x-1)=0 x2-x=0 よって y=1-x ... ③ よって x=0.1 ③から x=0 のとき y=1, x=1のときy=0 したがって,共有点の座標は (0, 1), (10) (2)kを定数として,次の方程式を考える。 1- 軒られる ② 2 (3)[] k(x2+y2-1)+(x2+y²-2x-2y+1)=0 ...... A 方程式 A は, (1) で求めた2円 1, ② の共有点を通る図形 -1 を表す。 A が直線を表すのは, k=-1 のときであるから -(x2+y2-1)+(x2+y²-2x-2y+1)=0 整理して x+y-1=0 (3)図形 A が原点を通るとして, A に x=0, y = 0 を代入す ると _k+1=0 A に代入して整理すると k=1 よって x2+y^-x-y=0 変形すると(x-1)+(-1/2)=1/2 [別解] 22点 (0, 1), (10)を通る直線の方程 式であるから x+y=1 ゆえに,求める円の中心の座標は 1/2), 半径は 1 半径は1/12 √2 2 合

解決済み 回答数: 1
数学 高校生

空間ベクトルについて質問です。 青いマーカー部分ですが、なぜ平面ABC上にあるからCN→=sCA→+tCB→になるのでしょうか?? 初歩的な部分ですみませんが教えて欲しいです。

平行六面体 OADB-CEGF において,辺DGのGを越える延長上に GM=2DG となる点をとり、 直線 OM と平面 ABCの交点をNとする。 OA=a, OB=1, OC とするとき, ON を a, 1, を用いて表せ。 CHART D GUIDE 交点の位置ベクトル 2通りに表して係数比較 1点が,直線 OM 上にあることに着目しON=kOM (kは実数)を利用してON を a, を用いて表す。 2点Nが, 平面 ABC 上にあることに着目し, CN=sCA+tCB (s, tは実数) を利用して,ON を dc を用いて表す。 312で2通りに表した ON の係数を比較する。 解答 点Nは直線 OM 上にあるから, ON =kOM となる実数んがある。 ここで OM=OA+AD+DM =OA+OB+3OC=a+6+3 M. 2 F B A ◆点Cが直線AB上にあ ⇔AC=kAB となる 実数kがある D)A (A E よってON=k(a+1+3c) a 0 b =ka+kb+3kc... 1 A D また,点Nは平面 ABC 上にあるから, CN=sCA+tCB となる実数 s, tがある。 これを変形すると ON-c=s(a−c)+t(b−c) 整理すると ON=sa+to+(1-s-t)...... ② 入 10 B (*) 平面上のベクトルに ついて, 0, 0. ax のとき,どんな |₺, þ=sà+tb ØÆR 表され, その表し方は 通りである (p.24)。 4点 0, A, B, C は同じ平面上にないから,ONのa, b, cこの断り書きは重要。 を用いた表し方はただ1通りである。 ゆえに、①,②から k=s, k=t, 3k=1-s-t +61 +02 1 これを解くと k=s=t= 5 ■ ②に代入してもよい。 ①に代入して = -a+ -6+ JJA

解決済み 回答数: 1
数学 高校生

二次方程式の解についての質問です。 マーカー部分ですが、なぜこの形になるのかがわからないです。②の式の左辺を変形したらいいと書いていますが、どう変形したらそうなるのか教えて欲しいです。 よろしくお願いします🙇🏽

発例題 展 52 2次方程式の解についての証明問題 <<< 基本例題46 ① 000 a b は定数とする。 方程式 (x-a)(x-b)+x+1=0 の2つの解をα,Bとす。 ると,方程式(x-a)(x-β)-x-1=0 の2つの解は a, b であることを証明 せよ。 CHART 解と係数の問題 GUIDE 解と係数の関係を書き出す すると、この例題の 一解答の方程式 ①,②から。 条件は α+β=a+b-1, αβ=ab+1 結論は a+b=a+β+1,ab=aβ-1 となり,③ から ④を示すとよいことになる。 ...... 4 解答 (x-a)(x-b)+x+1=0 の左辺を展開して整理すると x2-(a+6-1)x+ab+1=0 ① この2つの解がα, β であるから,解と係数の関係により ゆえに a+β=a+b-1, aβ=ab+1 a+b=a+β+1, ab=aβ-1 このことは, a, b が2次方程式 x2-(a+β+1)x+αβ-1=0 すなわち (x-α)(x-β)-x-1=0 の解であることを示している。 Lecture 因数分解の利用 x²+px+g=0 の2つの 解がr,s ⇔ r+s=-p rs=q GUIDE の方針により, 1 を移する。 FotstJ ■x2-(和)x+ (積) = 0 ②の左辺を変形。 2次方程式の解α, β に対して, (x-α)(x-B), (-a) (-B), (α-)(B)の形の式 が出てきたときは 平 ax2+bx+c=0 の2つの解がα, ßax+bx+c=a(x-a)(x-β) を利用することで, あざやかに解決できることがある。 [上の例題の別解] (x-a)(x-b)+x+1=0 の2つの解がα, β であるから 左辺は, (x-a)(x-b)+x+1=(x-a)(x-B)と因数分解できる。 (x-a)(x-B)-x-1=(x-a)(x-b) ゆえに よって, ← 移項 (x-a)(x-β)-x-1=0 の2つの解は a, b である。 J 全宗

解決済み 回答数: 1
数学 高校生

数学的帰納法について質問です。 マーカー部分、なぜ急に不等式が出てきているのか、またマーカー部分は何より小さいのか全くわからないです。 解説していただきたいです。よろしくおねがいします。

準 nを3以上の自然数とするとき, 不等式 4"> 8n+1 CHART (A)を証明せよ。 すべての≧で成り立つことの証明 GUIDE HART [1] 出発点 n= のときを証明 生 [2]n=k(k≧) のときを仮定し, n=k+1のときを証明 本問では「n≧3 のとき」という条件であるから,まず,n=3のとき不等式が成り立つ ことを証明する。なお、n=k+1のとき示すべき不等式は 4'+'>8(k+1)+1である。 不等式A>B を示す代わりに A-B>0 を示す。 |答 [1] n=3のとき (左辺) =4=64, (右辺) =8・3+1=25 よって, n=3のとき, (A)が成り立つ。 [2] k≧3 として, n=k のとき (A) が成り立つ,すなわち 4k8k+1 川 <64>2503 「3」を忘れずに。 が成り立つと仮定する。 n=k+1のときの(A) の両辺の差を考えると 4+1_{8(k+1)+1}=4・4-(8k+9) 48+1)-(8k+9) =24k-5>0 ← k≧3から。 すなわち 4k+1 > 8(k+1)+1 よって, n=k+1 のときも (A) が成り立つ。 ◆ここで上の仮定 4>8k+1 を活用。 40 であるから 4>8k+1 ) の両辺に4を掛けても、 [1], [2] から, 3以上のすべての自然数nについて(A)が成り不等号の向きは変わらな 立つ。 Lecture 出発点を変えた数学的帰納法大 「nが自然数のとき」ではなく、 「n≧m のとき」のような, ある特定の数以上のすべての自 然数について成り立つことを証明するには,出発点を変えた数学的帰納法を利用する。 その手順 は、次の通りである。 の場合、例題 26 での数学的帰納法。 [1] n=m のときを示す。 ←m=1の場合が, [2]n=k(ただし, k≧m) のときを仮定して, n=k+1 のときを示す。 注意 上の例題で n=1, 2 のとき, 4”は順に4, 16, 8n+1は順に 9, 17であり, 4">8n+1 は成り立たない。よって,機械的に「n=1 のとき,不等式は成り立つ。」など と答案に書かないようにしよう。

解決済み 回答数: 1
1/17