学年

教科

質問の種類

数学 高校生

教えてください🙏全然わかりません

(5)生細胞をつくるときに起こる染色体 を何というか。 (6) 体細胞で見られる同形同大の染色体を何というか。 (5) (6) ける。次に、1本 型となる1本鎮・ それぞれ DNA (2)複製(DNA 複製) (3)半保存的複製 (4) 体細胞分裂 (5)減数分裂 (6)相同染色体 例題 10 DNA の複製 つくられ、2組 列と全く同じに [アされた! べて同じ遺伝 59 DNAの 窒素源と 素 窒素源となる窒素化合物に重い窒素(N) のみを含む培地で,大腸菌を何世代にもわたっ て培養し、DNAの窒素がすべて『Nに置き換わった大腸菌を得た。この大腸菌を窒素て培養し, として軽い窒素 (''N) のみを含む培地に移して培養した。 'Nのみを含む培地に移して から3回目の分裂を終えた大腸菌からDNAを抽出し 質量の違いで分離した。 (1) 実験の結果,どのような重さのDNAがどのような比で分離されるか。 〔重い DNA] [中間の重さのDNA〕 〔軽いDNA] の比として適当なものを、次から1つ選べ。 10:1:1 20:1:3 ③ 0:17 5 1:6:1 ⑥ 3:1:0 7 7:1:0 ④ 1:2:1 (2)このような実験から分かった DNA の複製様式を何というか。 (1) Nのみ うな重 (軽い I ① 0: ⑤ 1: (2)この ① 解説 細胞分裂の前にはDNAの複製が行われる。 複製の際には、2本鎖 DNA がほどけて1本鎖となり、それぞれを鋳型に相補的な塩基配列を もつ新しい鎖が合成される (半保存的複製)。 RDNA 世代では、2本鎖DNAのどちらの鎖も『Nを含むので、重いDNA のみが観察される。 1回目の複製では, IN を含む鎖を鋳型に, 'N を含 む鎖が新しく合成される。そのため1代目では、2本鎖DNAの片方が HN, もう片方が『Nの中間型のDNA のみが現れる。 2回目の複製では、 IN を含む鎖型として複製された中間型 DNA が2本, 'N を含む を鋳型として複製された両方が 'Nのみを含む軽い DNAが2本できる。 同様に考えて、3回目の複製では中間型 DNAが2本, 軽いDNAが6 日本できるため、比は [重い〕 〔中間〕〔軽い〕 0:13 となる。 60 1代目DNA に の 2代目 DNA 答 (1) ② (2)半保存的複製

回答募集中 回答数: 0
数学 高校生

模試です!全て教えて下さると嬉しいです

3 ある旅行会社では,参加者を10名以上50名以下に限定したバスツアーを企画している。 このバスツアーを実施した場合にかかる費用には,「参加者の規模に応じて一律にかかる費 用」(貸し切りバスの費用など)と「参加者1名ごとにかかる費用」(施設への入場料など) がある。 参加者が 26 名以上になると貸し切りバスを2台用意する必要があるため、「参加者の規模 に応じて一律にかかる費用」は次の表のようになる。 参加者の人数 規模に応じてかかる費用 10名以上25名以下 26名以上50名以下 120000 円 210000円 また、参加者が 15名以上の場合, 団体割引が適用される施設があるため、 「参加者1名ご とにかかる費用」は次の表のようになる。 参加者の人数 参加者1名ごとにかかる費用 10名以上14名以下 15名以上50名以下 6000円 5000円 参加者の人数をx名(xは10以上50以下の整数), 1名あたりの参加料をα 円(αは 12000 以上の整数)とし,このバスツアーを実施したときの利益について考える。ただし、 利益とは参加料の合計から「参加者の規模に応じて一律にかかる費用」と「参加者1名ごと にかかる費用」の合計を引いた金額のことであり,キャンセル等による参加者の欠員や消費 税等の税金は考えないものとする。 (1) x=14 とする。 利益が76000円となるような, αの値を求めよ。 (2) x=20 のときの利益を4円,x=30 のときの利益をB円とする。このとき,A,Bを それぞれ」を用いて表せ。 また, |A-BI≦30000 となるようなαの値の範囲を求めよ。 (3)(2)の「A-B≦ 30000 を満たすαの最大値をMとする。 1名あたりの参加料が M円の とき、利益が参加料の合計の30%以上40%以下となるようなxの値の範囲を求めよ。 (配点 25 )

回答募集中 回答数: 0
数学 高校生

全問の答えと解説お願いします🙇🏻‍♀️🙇🏻‍♀️

3 ある旅行会社では、参加者を10名以上50 名以下に限定したバスツアーを企画している。 このバスツアーを実施した場合にかかる費用には、「参加者の規模に応じて一律にかかる費 用 貸し切りバスの費用など) と 「参加者1名ごとにかかる費用」(施設への入場料など) がある。 参加者が 26名以上になると貸し切りバスを2台用意する必要があるため, 「参加者の規模 に応じて一律にかかる費用」は次の表のようになる。 参加者の人数 規模に応じてかかる費用 10名以上25名以下 26名以上50名以下 120000 円 210000 円 また、参加者が15名以上の場合、団体割引が適用される施設があるため、 「参加者1名ご とにかかる費用」は次の表のようになる。 参加者の人数 参加者1名ごとにかかる費用 10名以上14名以下 15名以上50名以下 6000円 5000円 参加者の人数をx名(xは10以上50以下の整数), 1名あたりの参加料を4円 (a は 12000以上の整数)とし, このバスツアーを実施したときの利益について考える。ただし, 利益とは参加料の合計から「参加者の規模に応じて一律にかかる費用」と「参加者1名ごと にかかる費用」の合計を引いた金額のことであり、キャンセル等による参加者の欠員や消費 10:20:50.12000≦a 税等の税金は考えないものとする。 (1) x = 14 とする。 利益が76000円となるような, α の値を求めよ。 (2) x=20 のときの利益をA円, x=30 のときの利益をB円とする。 このとき, A,Bを それぞれを用いて表せ。 また, A-BI≦30000 となるようなαの値の範囲を求めよ。 (3) (2)の A-BI≦30000 を満たすαの最大値をMとする。 1名あたりの参加料 が M円の とき,利益が参加料の合計の30%以上 40%以下となるようなxの値の範囲を求めよ。 ( 配点 25 ) 4 だ (1) (2) (3)

回答募集中 回答数: 0
数学 高校生

5️⃣(4)を補集合を用いないでとく方法はありますか?

子ども4人を1列に並べるとき、次のような並べ方は何通り あるか。ただし、途中式や説明等を含めて記述すること。 (9点) (1) 子どもが4人続いて並ぶ。 5!×4!=5×4×3×2×1×4×3×2×1 2680 (2) 両端が大人である。 2!×6=2×1×6×5×4×3×2×1 = 1440 26801 (3) 両端の少なくとも1人は子どもである。 1440通り 5 先生と生徒2人 (メタ君, セコイアさん) の3人の会話を読みながら, 次のアセには適当な数字を, A, B には適当な 四則演算子(+, -, X, ÷ ) を右の解答欄に答えよ。 ただしア セルには数字が一つずつ対応して入り、同じカタカナ の枠には同じ数字が入る。 (24点) メタ : 今週出された週末課題は中々難しかったな~。 セコ: あ ! 忘れてた! どんな問題だったっけ・・・。 先生 : 出された課題はきちんと取り組まないと力にならないよ。 今回は特別に問題をもう一度教えてあげよう。 2 問題 同じ大きさの6枚の正方形の板を1列に並べて下のような掲示板 を作りたい。 赤, 青,緑のペンキを用いて, 隣り合う正方形どおし が異なる色となるように,この掲示板を塗り分ける。 ただし塗り 分ける際は、 すべてのペンキの色を使わなくてもよい。 (1) 塗り方は全部で何通りあるか。 _2) 赤色に塗られる正方形が3枚あるのは何通りか。 3) 赤色に塗られる正方形が1枚あるのは何通りか。 日) 赤色に塗られる正方形が2枚あるのは何通りか。 メタ:このような問題はそれぞれの板の塗り方が何通りずつあるかを 考えていくのがポイントになるよね! 先生:その通りです。 今回は板に左から a,b,c,d,e, fと名前を付けて 考えるといいよ。では(1)の問題から解いていこう。 36 96 19 a b ク ① ク ① : a I 1 1 セコ:まずαの板を塗る塗り方は「ア通りあるね。 同様にbfの 板の塗り方を考えていけば,塗り方は全部でイウ通りあるね。 メタ:そうだよね! 続いて(2)は通りあるね 先生 素晴らしい! () セコ : (3)は 赤色をどの板に塗るかによって複数の場合に分けられるね。 まずαの板が赤色に塗られる場合はカ通りあるわ。 d f 次にの板が赤色に塗られる場合はキ通りあるよね。 01 (2) 次にcの板が赤色に塗られる場合は・・・。 メタ ちょっと待って!cの板が赤色に塗られる場合は, 20 クの板が赤色に塗られる場合と同じ考え方で求められるよね。 ~ メタ君, セコイアさ A X 8 5 同じようにd,e, f の板が赤色に塗られる場合は, またはbの板が赤色に塗られる場合と同じ考え方になるよ。 セコ: 本当だ!じゃあカ通りになるのは全部でケパターンあり、 CHRITTSAG キ通りになるのは全部でコパターンあるってことか!入 だから(3) の答えは, hod(s) (① A ケ B キャ A コ=サン通りだ。 メタ : それにしても (4) は場合分けが大変だ… 先生 (4) は複数の場合に分けて考えることも可能だけれど、 今まで 求めてきた(1)~(3)の答えを活用して考えることもできるよ。 「補集合」 を利用する。 これがヒントだよ。 セコ: なるほど! 考えてみます! メタセコ : (4) の答えはスセ通りになります!Aパパが 先生:正解です!2人ともよく頑張ったね! 2 サ C 2 12 HOT 中~ 6 2 160% 8 688 4774 ħ + 2 ス 4 9 B 26 3 34 IWN-m-8 87 0 87 17 問題は 1

回答募集中 回答数: 0
数学 高校生

数学 進研模試 七月 大問3 (3)の場合訳がどのような考えでされているのかわかりません汗(2)なら絶対値内が正か負かで分けられたのですが…

3 ある旅行会社では、参加者を10名以上50名以下に限定したバスツアーを企画している。 このバスツアーを実施した場合にかかる費用には、「参加者の規模に応じて一律にかかる費 用」(貸し切りバスの費用など) と 「参加者1名ごとにかかる費用」(施設への入場料など) がある。 参加者が26名以上になると貸し切りバスを2台用意する必要があるため, 「参加者の規模 に応じて一律にかかる費用」 は次の表のようになる。 参加者の人数 規模に応じてかかる費用 また、参加者が15名以上の場合、団体割引が適用される施設があるため, 「参加者1名ご とにかかる費用」は次の表のようになる。 114 10名以上25名以下 26名以上50名以下 120000 円 210000 円 参加者の人数 参加者1名ごとにかかる費用 10名以上14名以下 15名以上50名以下 6000円 5000円 参加者の人数をx名 (xは10以上50以下の整数), 1名あたりの参加料をα円 (a は 12000以上の整数)とし, このバスツアーを実施したときの利益について考える。 ただし、 利益とは参加料の合計から「参加者の規模に応じて一律にかかる費用」と 「参加者1名ごと にかかる費用」の合計を引いた金額のことであり, キャンセル等による参加者の欠員や消費 税等の税金は考えないものとする。 140 Goose + hint (1 x = 14 とする。 利益が76000円となるような, α の値を求めよ。 a x=20 のときの利益を A円, x = 30 のときの利益をB円とする。 このとき, A, B を それぞれαを用いて表せ。 また, 「A-B|≦30000 となるようなαの値の範囲を求めよ。 (2)の「A-B≦30000 を満たすαの最大値をMとする。 1名あたりの参加料が M円の とき,利益が参加料の合計の30% 以上 40% 以下となるようなxの値の範囲を求めよ。 ( 配点 25 ) 7)- 21011-11-11

回答募集中 回答数: 0
数学 高校生

写真の赤丸⭕️の部分が、いつもプラスにするのかマイナスにするのかあやふやになります、、、 どうやって見分けるのか分かりやすく教えてください🙏🙇‍♀️

84 第2章 2 次 Think 例題 33 練習 ** 33 平行移動(②2) (1) 放物線y=-x+4x+1 は放物線y=-x2-6x+7 をどのように 平行移動したものか. (2) ある放物線Cを,x軸方向に2,y 軸方向に1だけ平行移動すると、 飲物線 y=2x-3x+4 になった。 放物線Cの方程式を求めすると 考え方 (1) 頂点の移動を考える. どちらをどちらに平行移動するのかを、しっかりおさえ (2) 放物線y=2x-3x+4 を逆に, x軸方向に -2,y 軸方向に1だけ平行移動 WALL ると, 放物線Cが得られる. Focus 解答 (1)y=x2+4x+1=-(x-2)2+5 より,頂点は点 (25) y=−x²−6x+7= −(x+3)²+1651 より,頂点は点(-3, 16) 頂点(-3.16) が点(2.5)に移動するから x 軸方向に, 2-(-3)=5 5-16=-11 (2) 放物線y=2x2-3x+4... ① を逆に, x軸方向に ―2 y軸方向に -1) だけ平行移動したものが, 放物線Cである. y軸方向に だけ平行移動している. よって,x軸方向に5,y 軸方向に-11y=2x²3x+4 よって, y=2x2+5x+5 逆の移動を考える 605061 放物線C つめる。 よって、①のxをx+2, y を y+1 におき換えて, _y+1=2(x+2)2-3(x+2)+4 STOS CASERT y=2(x²+4x+4)=3x-6+3 (8) 「x軸方向にか 軸方向に g [x軸方向に 頂点の座標をます JEAN- (移動した分) (後(前) ちなよ! 軸方向に-g VJ 頂点の移動で考えて もよい. C 放物線 C' (1) 放物線y=2x²-4x-1 をどのように平行移動すると, 放物線 y=2x2+8x- になるか. (2) ある放物線Cを,x軸方向に2,y 軸方向に3だけ平行移動すると, 線y=-x²+2x+3 になった. 放物線Cの方程式を求めよ. 放物 p.92 Cor <グ 対 たすあて とす であ ので 点 京 とな

回答募集中 回答数: 0
1/6