学年

教科

質問の種類

数学 高校生

(2)がよく分かりません💦 どうして2と5が出てくるんですか?

Think 例題 276 循環小数法(2) ) 4 整数の性質の活用 581 6桁の循環節をもつ循環小数 A=0abcdef を3倍すると, 6桁 * * * * 循環節をもつ循環小数 0.bcdefa になるような最小のAを求めよ. n 101 (2) 3 6 1より大きくより小さい分数が有限小数になるような正の 整数nをすべて求め 考え方 (1) 循環小数Aを10倍すると, a,bcdefa となる。 14=0.abcdef abcdef abcdef...... 10A a.bcdefa bcdefa bcdefa...... m n こうな数のときかを考える. (p.580 解説参照) (2) 分数が有限小数になるのは,既約分数に直したときの分母の素因数がどのよ (1)条件より また, 3A=0.bcdefa 10A a.bcdefabcdef.... (1)これより, 10A-3A を計算して これら10A=a.bcdefabcdef・・ T =) 3A=0.bcdefabcdef 7A=a したがっ したがって, Am① 循環節が消えるように Aを10倍する。 10A と3A の小数点以 下が同じになる. 合 ここで,0<A<1,0<3A<1 より <A</1/3Aの値の範囲 ① より 01/13 したがって, <a< ①より<</ aは整数 (0≦a≦)より,a=1,2s) よってこのうち、 最小の循環小数は α=1のときみ で、 A== 0.142857 7 63 (2)1/13より。 322 8<n<18 3n 4 3333333 33333333 分数を小数で表したとき, 有限小数になるのは,既 約分数に直したときの分母が2と5以外に素因数を もたない場合に限られる方から小さい方を引くと 8<<18 の範囲の正の整数nでこの条件に合う のは,分子が6,すなわち, 2×3であることから, 分 22×3-12, 3×5-15, 2-16 6 3 6 Focus 館 15 16 5 12 2 人 2 6 3 = 5' 16 15 8 第9章 ← 既約分数の分母の素因数が25のみ 既約分数が有限小数になる 276 このとき、もとの自然数のうち最小のものを求めよ。 m ある自然数の逆数を小数で表すと3桁の循環節をもつ循環小数0.abc となる.

回答募集中 回答数: 0
数学 高校生

なぜ弦の長さを2lと置くのですか?

解答 円 ②の中心 (0, 0) 直線 ①の距離は, |2| √2+(-1) |2| 2 √55 == 求める弦の長さを2ℓ とすると,円の 半径が22より Think 例題 89 弦の長さ(1) **** 直線 y=2x+2 ① が円 x+y'=8......② によって切り取られて できる弦の長さを求めよ. 考え方 図に描いて考える. 円の中心と弦の距離を求めて, 三平方の定理を利用する. y=2x+2 より 2x-y+2=0 2ℓ とおくのがポイ ント ay 2√2 2√2 2√2 M €² + (√²²)²= (2√2)² 2 x 8= (22) 2 V ME) 36 + 三平方の定理 5 lo より l= =6√5 5 よって、 弦の長さ 2ℓ は, 12/5 5 (別解) ①を②に代入して, x2+(2x+2)2=8 YA 求める長さは2ℓで あることを忘れずに、 解と係数の関係を利 (3,23+2)用する解法 5x2+8x-4=0 ・③ また,円 ②と直線 ①の交点の座 標を(α, 2α+2) (3,2β+2) とす ると,,βは2次方程式 ③ (a,2a+2) E) ふん」の2つの解だから,解と係数の関係より, ちょう 8 α+B=B=14 4 5 長さを l とすると, x Bax²+ bx+c=0 0) 2つの解をα βと すると (E)-(a+B=-- l°=(β-α)+{(2β+2)-(2α+2)}=5(β-α)2 (3-α)a= a aẞ= 55のときだす =5((a+3)-4aß)=5(-)-4()} 2 144 三平方の定理 よって、l>0より、弦の長さは, 12/5 Focus I+ awo+m 弦の長さの問題は、円の中心から弦に垂線を引き、 三平方の定理を利用する D>m> l²+d²=r² 接点の直

未解決 回答数: 1
数学 高校生

(2)の問いについてです。 定点となるMを右の写真の解のような形で表してはいけないのでしょうか。ダメな理由も教えていただけるとありがたいです

Check 例題 360 直線のベクトル方程式(1)円3 07*** (1) 異なる2点A(a),B() に対して, p=(1-t)+t6 (1) 表される図形はどのような図形か. (2) 3点A(a),B(b),C(c) を頂点とする △ABC がある. 辺ACを 21 に内分する点M () を通り,辺ABに平行な直線のベクトル 方程式をa, 6, こと媒介変数を用いて表せ 考え方 (1) ja+(-a) と変形すると,点P(j) は点Aを通り, ABに平行な直線上にあ ることがわかる (2)M(m)を通り、ABに平行な直線のベクトル方程式は,p=m+tAB と表せる。 解答 (1) = (1-1)+16=a+1(-a) 点P()は,点Aを通り b=a+1(6-9) 1 変化する 定点 A1=0 6-d=ABに平行な直線, すなわち直線AB上を動き, b-a a t=0 のとき, = より, 点Aの位置 t=1 のとき, = より,点Bの位置 t=1 B tが0から1まで変 わるとき、点Pは点 にある。 よって、求める図形は, 線分AB である. AからABの向き (2) 求める直線上の任意の点をP() とする.点M(㎡) に, Bまで動く。 a+2c は,辺ACを2:1 に内分する点だから, m= 3 求める直線は辺AB と平行だから,その方向ベクト ルは, AB (S-C A(a) よって,=m+tAB=+2c+(-a) P(p) (M(m) 3 すなわち, = (1/31) a1+1+1/2/30 B(b) c(c) AB JS Focus 点A(a)を通り, d に平行な直線のベクトル方程式は, p=a+td 2点A(a),B(b) を通る直線のベクトル方程式は, b=(1-t)a+tb とくに, t のとき, 線分AB を表す 足して1

未解決 回答数: 0
数学 高校生

この、速度の求め方はなぜ微分を使うんですか? すみません、全然分からなくて💦

** a 入する。 では, 無線も (2) B 201 ある。 運動と微分 式への応用 **** 時刻における点Pの速度および、点Pが運動の向きを変 える時刻を求めよ. 半径1cmの球形の風船があり、 空気を入れはじめてから、半径に 0.5cm/sの割合で増加しているという.4秒後の体積の増加する。 度を求めよ. 「刻における座標s が s=f(t) のとき 時刻 方 (1) 速度に関する問題である。 直線上の動点Pの時 ds dt における速度はv=f'(t) 速さは v また、運動の向きが変わる速度の符号が変わる (2)変化率に関する問題である。 変化する量Vが時刻tの関数で、V=f(t) のとき dV=f'(t) (時刻 t における)変化率 dt 球の体積Vをtを用いて表すとよい。 (1)時刻 t における点Pの速度を”とすると、このと きの座標は,s=-6f2+9t-2 であるから, ds S=3t-12t+9=3(t-1)(t-3) v=- dt よって、 速度は3t-12t+9 時間 位置 速度 tについて微分する. 点Pが運動の向きを変え るのは、速度vの符号が変 わるときであるから,右の 表より, t=1,3 t 1 3 v 0 0 (2) t秒後の半径をrcm, 体積をVcm とすると, r=1+0.5t より 4 V=1/22/12(1+0.5t) = (21) dV πC したがって, dt 6 dV t=4 のとき, dt よって、増加する速度は, 6xxan 3(2+1)²+1=72 (2+1)² (2+4)=18 18cm3/s 球の体積V=132 最初の半径が1cmで 0.5cm/sの割合で増加 1+0.5t =1+1/21=1/2(2+1) [{f(x)}")' ={f(x)}^-'.f'(x) 第6章 Focus 時刻 t とともに変化する位置や量は、時刻 t で微分して扱う 練習 201 ** (1) 直線上の動点Pの時刻における座標 s は, s =f-9t+15t-6である。 時刻における点Pの速度および、点Pが運動の向きを変える時刻を求め 主面積の増加する速度を求めよ.

未解決 回答数: 1
数学 高校生

この問題の(ⅰ)はa=0の時をなぜ確かめているんですか?

368 第6章 微 Think 例題 198 実数解の個数(2) **** 3次方程式-3a'x +40=0が異なる3つの実数解をもつとする。栄 数αの値の範囲を求めよ. 114 考え方 例題 197 (p.367) のように定数を分離しにくい。 このような場合は,次のように3次 数のグラフとx軸の位置関係を考える。 3次方程式 f(x)=0が異なる3つの実数解をもつ 3次関数においては、 y=f(x) のグラフがx軸と3点で交わる (極大値)>0 かつ (極小値)<0 (極大値)×(極小値) < 0 (極大値)> (極小値 ) 解答) f(x)=x-3ax+4a とおくと f'(x)=3x²-3a²=3(x+a)(x-a)...... ① 方程式 f(x) =0 が異なる3つの実数解をもつ条件は、 y=f(x) のグラフがx軸と3点で交わること つまり、(極大値)×(極小値) <0 となることである. (i) ①より、f'(x)=0 のとき, a>0のとき、 y=f(x) A f(a)f(B) f(x)が極値をもっ f(x)=0が異なる? つの実数解をもっ f'(x)=0の 判別式) > 0 x=-a,a x -a 増減表は右のよう f'(x) + 0- 20 a (p.353 参照) + 直接, 増減表を書いて になる. f(x) 極大 極小 極値を調べたが、 a0 のとき, X a -a 増減表は右のよう になる。 f'(x) + f(x) 0 20 (+) 極大 極小 a=0 のとき,f(x)=xより,f(x)=0 の解は x=0 (3重解)となり不適 (ii) f(-a)xf(a)=(2a3+4a)(-2a3+4a) =-4a² (a²+2)(a2-2)<0 (i)より, a=0 であるから,a>0,d²+2>0より, a²-2>0 これより、 (a+√2) (a_√2)>0 a<-√2√2<a よって、求める αの値の範囲は, a<-√2√2<a 3次方程式(x)=0が異なる3つの実数解をもつ y=f(x)のグラフがx軸と3点で交わる (極大値)>0かつ (極小値) <0 (極大値) X (極小値) < 0 f'(x) =0 の判別式を 使ってもよい。 判別式をDとすると D=-4-3(-3a²) =36a2>0 より a<0, 0<a (a=0) となる. Focus 注> 例題198 で (1) f(x) が極値をもつ (Ⅱ) (極大値)×(極小値) <0 満たさないと (極値

未解決 回答数: 1
数学 高校生

微分についての質問です。一枚目の写真で青マーカーを引いたところには、「三次不等式はグラフを利用して求める。極値を求める必要はない。」とありますが、例題212.213では極値を出して解いている気がします。 ・なぜ例題212.213では極値を出して、例題216では極値を出して... 続きを読む

2 406 第6章 微分法改 練習 [216] **** 7956 く 50 785 2210 196 例題 216 三角不等式 **** cos 30 + cos 20+ cos >0 を満たす0の値の範囲を求めよ.ただし, 0≦02 考え方 解答 とする. 例題 212(p.402) と同様にして3次関数のグラフとx軸の位置関係を考える. まず cosa=t とおき,tの3次不等式を作る cost とおくと,002πより、 また, cos30=4cos0-3cos0=4t-3t cos 20=2 cos 0-1=2t2-1 4t3+2t-2t-1>0 したがって, 与式は, (4t-3t) + (2-1) +t>0 2t2(2t+1)-(2t+1)>0 (2t+1)(2-1)>0 ...... ② (2t+1)(2-1)= 0 とすると, tの値の範囲に注意 与式の左辺を cosで 統一する。そのとき 倍角,2倍角の公式を 利用する. ((p.269 参照) 組み合わせを考えて, 因数分解する。 [解] Commen ここ こで, 2 線が一致 200 とし, 線をも この √2 1 1 t=- 0 2' √2 2 y=4t+2t-2t-1 のグラフは, 右の図のようになる. したがって、②の解は、 ①より RD 3次不等式はグラフを 利用して考える. 極値 を求める必要はない。 30 1 <t≦1 √2 2√2 よって,t=cos 0,0≦02 より 0≤0< 単位円を利用して8の 範囲を求める. て π 第3,4象限の解と第2, 2 3 147 4 1 √2- 1象限の解は,それぞ 例 0 5 << 27 << れx軸に関して対称 10 1 x 43 7 3π 1 4π 注〉和積の公式を用いて次のように解くこともできる. (p.274 参照) ( cos30 + cos 0) + cos20>0 2 cos 20 cos 0+ cos 20>0 cos 20 (2 cos 0+1)>0 (2cos'0-1)(2cos0+1)>0 ここで, cosa=t とおくと, cosA+ cosB=2cos- A+B A-B COS 2 2 (2t2-1)(2t+1)>0 あとは、例題216と同様にして解けばよい. tan 20 + tan00 を満たす 0 の値の範囲を求めよ。ただし,0≦02 とする. 次

回答募集中 回答数: 0
数学 高校生

高次方程式についての質問です。青のマーカーを引いたところと、紫のアンダーラインをつけたところが何を言ってるのかさっぱりわかりません。紫のところは何故そうなるのか分からず、青のマーカーはこの文で何を伝えたいのか、文章の意味すらよくわかりません。どちらか片方だけとかでもいいので... 続きを読む

* り 改) 余り x) を とき Think 例題 53 割られる式の決定 3 高次方程式 115 **** x'+2x+3で割ると x+4余り, x2+2で割ると1余るような多項式 P(x) で,次数が最小のものを求めよ. 考え方 P(x) を4次式 (x+2x+3)(x+2) で割った余り R(x)は3次以下の式である. 解答 P(x) = (x2+2x+3)(x+2) (商)+R(x) m +2x+3で割るとx+2x+3で割ると、余りは、 割り切れる. 1次以下の多項式 P(x) をx+2x+3で割った余りと一致する. P(x) を4次式(x2+2x+3)(x+2)で割ったときの商を Q(x)余りをR(x) とすると (x)=(x+2x+3)(x2+2)Q(x)+R(x) ・・・・・・ ① と表せ,R(x)は3次以下の式である。 また、①において,P(x) をx+2x+3で割ると, (x+2x+3)(x+2)Q(x)はx+2x+3で割り切れるから, P(x)をx'+2x+3で割った余りx+4は, R(x) をx'+2x+3で割った余りと一致する。 つまり、R(x)=(x+2x+3)(ax + b) + x +4 ...... ② とおける. 同様に,P(x) を x+2で割った余りが-1であるから, R(x)=(x+2)(cx+d-1 ...... ③とおける. ②③より, (x2+2x+3)(ax+b)+x+4=(x+2)(cx+d)-1 が成立し, 左辺と右辺をxの降べきの順に整理すると ax+(2a+b)x2 + (3a +26+1)x +36 +4 =cx'+dx2+2cx+2d-1 これはxの恒等式であるから, n a=c, 2a+b= d, 3a+26+1=2c, 36+4=2d-1 これらを a b について解くと, a=1, b=-1 よって,②より R(x)=(x2+2x+3)(x-1)+x+ 4 = x + x+2x + 1 ①より P(x)=(x2+2x+3)(x+2)Q(x)+x+x+2x + 1 そして,P(x)の次数が最小になるのは Q(x) =0 のとき である. Focus 練習 53 **** よって、 求める多項式は, P(x)=x+x'+2x+1 割る式が4次式なの で、余りは3次以下 R(x) は3次以下の 式だから 2次式で 割ったときの商は1 次以下の多項式と なる. c, dを消去すると、 a +26=-1 4a-b=5 Q(x) =0 のとき, P(x) は4次以上の 式となる。 多項式 P(x)=A(x)・B(x)+R(x) のとき,P(x) をA(x)で割っ た余りと,R(x) を A (x)で割った余りは等しい費用 (x-1)2で割ると x +3余り(x+2)2で割ると-8x+12余るような多項式 P(x) で、次数が最小のものを求めよ. コン 2 うまくり

回答募集中 回答数: 0
1/27