学年

教科

質問の種類

数学 高校生

この問題の(2)と(3)がよく分からないので教えて欲しいです!!

144 第6章 微分法と積分法 基礎問 90 共通接線 アイは一致するので, 3d²=2a+p, -20°=q- よって, カ=3a-2a, q= -20°+α² 145 5/5 3.0 2つの曲線 C: y=x, D:y=x2+pr+g がある. (1) C上の点P(a,d)における接線を求めよ (2) 曲線DはPを通り,DのPにおける接線はと一致するこ のとき,,g をαで表せ. => '+(3)(2)のとき,Dがx軸に接するようなαの値を求めよ. ばれます (2)2つの曲線 C,Dが共通の接線をもっているということです が,共通接線には次の2つの形があります。 精講 (I型) y=f(x) y=g(x) P a (Ⅱ型) 3y = f(x) y=g(x) Q 適です。 P 違いは、 接点が一致しているか,一致していないかで, この問題は接点がP で一致しているので(I型)になります. どちらの型も、接線をそれぞれ求めて傾きとy切片がともに一致すると考え れば答をだせますが, (I型) についてはポイントの公式を覚えておいた方が よいでしょう. 解答は、この公式を知らないという前提で作ってあります. 解答 (1) y=xより,y'=3だから,P(a, α3) における接線は, y-a3-3a2(x-a) :.l:y=3ax-2a3.......ア C 0186 5 : y = (x + £ ²)² + q − 2² だから, 曲線 (3) D:y= 4 Dがx軸に接するとき,頂点のy座標は 0 D² =0 q- 4 ∴.4g-p20 よって, 4-2a3+α²)-(3-2)=0 4a²(−2a+1)-α(3a-2)2=0 a^{-8a+4-(9α²-12a+4)}= 0 a³(9a-4)=0 :.a=0, 459 注 α=0 が答の1つになること は,図をかけばx軸が共通接線 であることから予想がつきます. (2)はポイントを使うと次のようになります。 f(x)=x, g(x)=x+px+q とおくと f'(x)=3.2g'(x)=2x+p [a=a+pa+g 13a2=2a+p ポイント よって, x²+px+q=0 の (判別式) = 0 でもよい 展開しないで共通因数 でくくる YL p=3a2-2a q=-2a³+a² 10. 2つの曲線 y=f(x) と y=g(x) が点(t, f(t)) を 共有し,その点における接線が一致する f(t)=g(t) かつ f'(t)=g'(t) y-f(t) =f(t)(x-t) (2)PはD上にあるので,a' + pa+q=α ... ① また,y=x'+px+g より y'=2x+p だから, Pにおける接線は,y-d= (2a+p)(x-a) y=(2a+p)x+a³-2a²-pa y=(2a+p)x+q-a² ......①(£) 演習問題 90 第6章 関数 f(x)=x2+2とg(x)=-x+ar のグラフが点Pを共有 し、点Pにおける接線が一致するこのときαの値とPの座標を 求めよ.

回答募集中 回答数: 0
数学 高校生

高校1年生 数Ⅱ 式と証明 2の(4)と5の(3)を計算してみたのですが、答えが合いません。教えていただきたいです🙏

(1) (2a+b)x+(3a-b+5)=0 (2) (a+3)x¹+(3a-b)x+(b+c+2)=0 CF) (1) a=-1.6=2 (2) 2 次の等式がxについての恒等式となるように、 定数a, b, c, d の値を定めよ。 (1) x2+7x+6=(ax+b)(x+1) (2) ax+bx=(x-2)(x+2)+c(x+2)* (3) x²-a(x-2)²+(x-2)+c ( a(x-1)³ + (x-1)²+x-1)+d=x²+x²+*+1 (3) (1) -1,b=6 (2) a=2, b=4,c=1 (3) a=1, 6-4, c=4 (4) a=1,0=4, c=6, d=4 次の等式がxについての恒等式となるように、 定数a,b,cの値を定めよ。 d b 3x+5 (1) ²=1+1 (2)x+1+x+3 (x+1)(x+3) 4 (x+1)(x-1)2 x+1 (2) a=-3, b=-9, c-7 解答 (1) 略 (2) + WE (1) a=1, b = -1 (2) a=1, b=2 (3) a=1, b=-1, c=2 4 次の等式を証明せよ。 (1) (a²+36³)(c²+3d²)=(ac-3bd)² +3(ad+bc)² (2) a²+b²+c²_ab_bc-ca=½{(a−b)²+(b−c)²+(c −e)²} (12) 略 (3) 略 5a+b+c=0のとき, 次の等式が成り立つことを証明せよ。 (1) (a+b)(b+c)(c+α) +abc=0 (2) '+ab+b2=(ab+bc+ca) (3) a²b+c)+ b²c+a)+c²(a+b)+3abc=0 (1) 略 (2) 略 (3) 略 (x-1)2 26 29 ⑥1=1/2のとき、次の等式が成り立つことを証明せよ。 6 (1) (a+b)(c-d)=(a−b)(c+d) (2) 7 a:b:c=2:3:4, abc0 とする。 ab+bc+ca (1) の値を求めよ。 a² +6² +c² (2) 3a+2b+c=32のとき, a,b,cの値を求めよ。 (2) a=4, b=6, c=8 ab+cd ab-cd = = a²+c² a²-c² [8a> b,c>d のとき、次の不等式が成り立つことを証明せよ。 4c+bd>ad+bc 12 次の (1) (2) 13 次 (1) [14 15

回答募集中 回答数: 0
1/61