学年

教科

質問の種類

数学 高校生

統計の母比率の問題です!! sを使って解く方法とR(1ーR)を使って解く方法はどのような違いがあるのでしょうか?

宮城大 第6問(選択問題) 次の問題を解答するにあたっては、必要に応じて次ページの正規分布表を用いてもよい。 ある県の全世帯から2500世帯を無作為抽出して、 ある意見に対する賛否を調べたところ, 1600 が賛成であった。このとき、次の問に答えよ。 各世帯が賛成したとき1. そうでないとき0の値をとる確率変数を X とする。 抽出した大き 2500の標本についてのXの標本平均と標準偏差を求めよ。 この県の全世帯における賛成の母比率を 信頼度 95%で推定せよ。 結果は小数第4位を四 入して小数第3位まで記述せよ。 この県の全世帯における賛成の母比率を 信頼度 99%で推定せよ。 結果は小数第4位を四 五入して小数第3位まで記述せよ。 2024年度 後期日程 6 150 1.25 96 25 -50 184 3 10.230 400 625 256 400-256 0.2 92 30k R 125 144 625 605 標準偏差は 500 256 R-1.96× T SE R+196xjn RT 0,2304 25 625 12 S= 12 (2 S= 125 1625 12 144 125×25 h=2500 0.6210.659 20246 カテゴリーで知りたい! EXERCISES 母比率の推定 信頼区間の幅 本 例題 77 大学で合いかぎを作り、そのうちの400本を無作為に選び出し調べたと ころ8本が不良品であった。合いか全体に対して不良品の含まれる 率を95%の信頼度で推定せよ。 00000 A (弘前大) (2)ある意見に対する賛成率は約60%と予想されている。この意見に対す る賛成率を,信頼度95%で信頼区間の幅が8%以下になるように推定した い。 何人以上抽出して調べればよいか? HART & SOLUTION の式における差 標本の大きさが大きいとき、標本比率を R とすると、 母比率に対する信頼度95% の信頼区間は p.467 基本事項 ホットニ 間違え R(1-R) R(1-R) NG R-1.96 n R+1.96 「R(1-R) n R(1-R) よって、信頼区間の幅は 1.96. -1.96 n n 解答 4 (1) 標本比率 R= =0.00. (1-R) =0.007 400 9 母集団と標本 10 指定 59 1個のさいころを150回投げるとき、出る目の平均をXとする。 Xの 待値,標準偏差を求めよ。 72 600 平均m, 標準偏差 の の正規分布に従う母集団から4個の標本を抽出すると 471 その標本平均Xがm-oとm+g の間にある確率は何%であるか。 73 20 推 E 61 母標準偏差の母集団から、大きさの無作為標本を抽出する。 ただし、 nは十分に大きいとする。 この標本から得られる母平均mの信頼度95% 10 の信頼区間を A≧m≦Bとし, この信頼区間の幅ムをL=B-A で定 める。この標本から得られる信頼度99%の信頼区間を Cám≦D とし、 この信頼区間の幅LをLD-Cで定めるとが成り立つ。 また、同じ母集団から, 大きさ 4nの無作為標本を抽出して得られる母平均 mの信頼度 95%の信頼区間を Em≦Fとし、この信頼区間の幅を L=F-Eで定める。このとき が成り立つ。 は小数第2位を四捨五入して、小数第1位まで求めよ。 [センター試験] 76 62 弱い酸による布地の損傷を実験するのに、その酸につけた布地が使用に面 えなくなるまでの時間を測ることにした。 このようにして、与えられる 違わないことが

解決済み 回答数: 1
数学 高校生

数学の問題です (3)についてです -1<x<1のとき、なぜθの値が2つ存在するといえるのでしょうか どなたか解説よろしくお願いします

大学) B上に No 5 があるから 10 [2024 西南学院大] 002 のとき, αを定数として, 関数 f(0) =4sin204cos0 +1 -a を考える。 (1) cos0=xとおくとき, f (0) をxの式で表せ。 (2) a=0 のとき, f(0) の最大値, および最小値と,それらの値をとるときの0の値を 求めよ。 いる。 方程式 f(0)=0が異なる4つの解をもつとき, aのとりうる値の範囲を求めよ。 求 家の足をHと (1) f(8)=4sin-4cos0+1-a=4(1-cos20)-4cos0 +1-a =-4cos20-4cos0+5-a=-4x2-4x+5-a (2)002のとき -1≤x≤1 ① また,g(x)=-4x2-4x+5-α とすると, a=0のとき g(x)=-4x2-4x +5 =-4(x+1)²+6 ①の範囲において, 関数 g(x) は x=-- -- で最大値6,x=1で最小値 -3 2 をとる。 002 であるから, x=-- -12 となるのは、 2 4 cos=-- ・から x=1 となるのは, cos0=1から 0=0 2,-s)」 よって, 関数 f(0) は 4 ・π, 0=1/2x, 1/3本で最大値6 1-2 ©DISNEYIPOKAF 1 10 2 -3 x x (2) 0=0で最小値-3 をとる。 (3) -1 <x<1であるxに対して, 対応する0の値は2つ存在するから, 方程式 g(x)=0が1<x<1の範囲に異なる2つの実数解をもつようなαの値の範囲を求め ればよい。 方程式 g(x) = 0 を変形すると -4x2-4x+5=a よって、 求めるαの値の範囲は, 曲線 y= -4x2-4x+5 と直線y=αが−1<x<1 の範囲で異なる2点で交わるようなαの値の範囲に一致する。 したがって, (2) から 5<a<6

解決済み 回答数: 1
数学 高校生

普段から図形は書いた方がいいですかね? こういう系の図がへったくそで時間食っちゃうので書かないんですが、書くコツありますか? この問題ではどんな図になるか教えて欲しいです🙏

3iを単位とし、COS・ +isin とする。 (1) イであり、 3n ウイである。 (2) n = (21) カー1 -1 あり、 (3) コである。 また、 (2n-1)-1, n-1 である。 K+ である。 ギ ケで 2 lafe 25× (25点) 14を自然数とし、関数fn (z) =logx (0) とする。 座標平面上の曲線 =jn (z)上の点(a,∫(q))における接線が、座標平面の原点を通るという。 ただし、 log は自然対数を表し、文中のeは自然対数の底を表す。 回 (1) 接線の傾きは |ア + である。 (2)In-fn(x)dx とすると tge el f (3)領域Dの面積は チ シテ 日 シテ である。また、領域Dをェ軸のまわりに1回転させてできる立体の体積は ヌネ ホ ノハヒ ノハヒ である。 f(x) A (x)'g+x (25点) = -n x™ logx tx="x" -n-t グリッx+x -n-I (-vlx+1) い af() x 必ず!! x=a, 9=an log a 3 f alog ath lay a =ah log a + fa 1 Z 2 1 1 z) (1+z) 1 1-2 1 + 1-z 2 1 1+222 + +2z2 ) (1+z²) 21_5 + = 2 1 + 4+ 2 →ス・ 2 T セ Nor 力 ケコ タ 1₁ = 110 = オ キク サシス である。 n=5とする。このとき, 曲線Cと接線およびェ軸によって囲まれた領域 (境界 を含む)をDとする。

解決済み 回答数: 1
1/10