数学
高校生
解決済み

数学の問題です
(3)についてです
-1<x<1のとき、なぜθの値が2つ存在するといえるのでしょうか
どなたか解説よろしくお願いします

大学) B上に No 5 があるから 10 [2024 西南学院大] 002 のとき, αを定数として, 関数 f(0) =4sin204cos0 +1 -a を考える。 (1) cos0=xとおくとき, f (0) をxの式で表せ。 (2) a=0 のとき, f(0) の最大値, および最小値と,それらの値をとるときの0の値を 求めよ。 いる。 方程式 f(0)=0が異なる4つの解をもつとき, aのとりうる値の範囲を求めよ。 求 家の足をHと (1) f(8)=4sin-4cos0+1-a=4(1-cos20)-4cos0 +1-a =-4cos20-4cos0+5-a=-4x2-4x+5-a (2)002のとき -1≤x≤1 ① また,g(x)=-4x2-4x+5-α とすると, a=0のとき g(x)=-4x2-4x +5 =-4(x+1)²+6 ①の範囲において, 関数 g(x) は x=-- -- で最大値6,x=1で最小値 -3 2 をとる。 002 であるから, x=-- -12 となるのは、 2 4 cos=-- ・から x=1 となるのは, cos0=1から 0=0 2,-s)」 よって, 関数 f(0) は 4 ・π, 0=1/2x, 1/3本で最大値6 1-2 ©DISNEYIPOKAF 1 10 2 -3 x x (2) 0=0で最小値-3 をとる。 (3) -1 <x<1であるxに対して, 対応する0の値は2つ存在するから, 方程式 g(x)=0が1<x<1の範囲に異なる2つの実数解をもつようなαの値の範囲を求め ればよい。 方程式 g(x) = 0 を変形すると -4x2-4x+5=a よって、 求めるαの値の範囲は, 曲線 y= -4x2-4x+5 と直線y=αが−1<x<1 の範囲で異なる2点で交わるようなαの値の範囲に一致する。 したがって, (2) から 5<a<6
数学 高校数学

回答

✨ ベストアンサー ✨

cosθ=x,0≦θ< 2πですから、例えばx=1/2となるようなθはθ=π/3,5π/3の2つがあります。0≦θ< 2πの周期の間では1,-1を除いてcosθは同じ値を2回取ります。なので-1<x<1ではθに対応するものが2つあります。

なるほど!0≦θ<2πのとき、-1≦cosθ<1となり、
−1<cosθ<1で単位円上をθが動くとき、cosθが同じ値をとるのは2回あるということですね!
詳しい解説ありがとうございますm(_ _)m

この回答にコメントする
疑問は解決しましたか?