学年

教科

質問の種類

数学 高校生

サシスセがわかりません (5.5)が最大になるのですがなぜですか?どういうことですか?

原料 A, B, C を使って製品 P, Q を作る企画が立ち上がったので、次の (a)~(d)の条件のもとで、 得られる利益のシミュレーションをしたい Pを1台作るのに, A, B, C をそれぞれ3kg, 1kg, 1kg 使う。 (b)Qを1台作るのに, A, B, C をそれぞれ1kg, 2kg 1kg 使う。 (e) A, B, Cは1日につき, それぞれ 20kg 16kg 10kgまで使用できる。 (d) P, Qの1台あたりの利益は, それぞれ5万円, 4万円とする。 いま, P,Qを1日あたり,それぞれx台, y台作る。 ただし, x, yは0以上の整数とする。この とき、条件(a)~(c)を不等式で表すと ア x+ys イウ x+1 I y オカ lxty≧キク が成り立つ。このとき, 1日の総利益を万円とする。 (1)k=ケ x+ ay で, kの最大値はサシ 万円である。 これは,Pをス 台,Qをセ 台作るときである。 (2) 新しい戦略を探るために, Pの1台あたりの利益を4万円 (a>0) として考える。 (i)(1)と同じくPをス台, Qをセ台作ることで,kが最大になるようなαの値の範囲 は ソ Sas タチ である。 (ii) a>+ となったときは,Pを ツ ]台,Qをテ台作ることに変更すれば,k を最大 にでき,最大値はト α+ナ (万円) になる。 また、この変更により, (i)のPを ス ]台, Qをセ台で作り続けた場合に比べ, 1日の総 利益がαニヌ (万円) 増えることがわかる。 0 (20)

未解決 回答数: 1
数学 高校生

数学の三角関数の問題です。添付の問題の(1)の解説で、x'=rcos(α+3/π)となっている部分が、x'=rcos(3/π-α)のように思えてしまって、なぜカッコの中がα+3/πとなるのかがわかりません。基本的な考え方が身に付いていないのかもしれず、その前提で教えていただ... 続きを読む

246 基本 例題 153点の回転 π 3 点P(3, 1), 点A(1,4) を中心としてだけ回転させた点を Qとする。 (1)点が原点に移るような平行移動により、点Pが点P'に移るとする。 •だけ回転させた点 Q' の座標を求めよ。 /p.2.41 基本事 25 基本事項 12倍 点P'を原点Oを中心として π 3 (2) 点Qの座標を求めよ。 指針 点P(x0,y) を, 原点Oを中心としてのだけ回転させた点を Q(x,y) とする。 y OP=rとし、 動径 OP と x 軸の正の向きとのなす角をαと すると Xorcosa, yo-rina OQで, 径 OQx軸の正の向きとのなす角を考える と、加法定理により x=rcos(a+0)=rcosacos0-rsinasin( Xo Cos O-yosin 0 Q(rcos(a+0). ysin(a +8) P (rcosa, 2 半角 33倍 rina) 0 % 解 12倍 三角 y=rsin(α+0)=rsinacos0+rcosasin 0 た Yo cos 0+ x sin ( sin( この問題では,回転の中心が原点ではないから, 上のことを直接使うわけにはいかな い。 3点P, A, Q を 回転の中心である点が原点に移るように平行移動して考える。 (1)点Aが原点 0 に移るような平行移動により, 点Pは点 解答 P'(2,-3) に移る。次に,点Q′'の座標を (x, y) とする。 また, OP'=rとし, 動径 OP' とx軸の正の向きとのなす 角を とすると 2=rcosa, -3=rsina x軸方向に-1, y軸 方向に-4だけ平行移 動する。 COS また 更 半の 2 練習 ③ 153 よって x=rcos(a+1)= π 3 =r rcosa cos -rsinasin 3 TC rを計算する必要はな 3 √32+3√3 い。 -2018-(-3)2+3 / 2 y=rsin(u+/5) - =rsinacos 3 πC cos/trcosasin y A 3 =3/12/+2.13 2/3-3 したがって, 点 Q' の座標は 2 2+3/3 3√3 2√3-3) 2 (2)Q'は,原点が点 Aに移るような平行移動によって, 点Qに移るから,点Qの座標は (2+3√3+1.2/8-3+1)から(4+3/82/3+5) 1/20 P/ PQ 13 πだけ回転させた点 Qの座標を求めよ。 (2)点P(3,-1), 点A(-1, 2) を中心として 標を求めよ。 TC 3 だけ回転させた点Qの座 p.254 EX93 (2)

未解決 回答数: 1
数学 高校生

√1+f(x)'の公式に当てはめて解いたのですが、回答の答えにはなりませんでした。これでは解けないのでしょうか?教えて頂きたいです。よろしくお願いします。

(5)) 2sin/128-tcos/1/2 (s)tsin/1/2 1 (6) (L) 12 (6XL)*+* 2 ■解説 ≪媒介変数表示された曲線の形状と長さおよび面積≫ =0とおくと, sin00 (π<< より 00 dy sin O (1)・(2) dx 1 + cos 0 このときy=0である。 また, -π<< πにおいて よって, 曲線Cは点 (0,0)においてx軸に接する。(→(あ) (レ dx de から,g(-π) <x<g(x)より =1+cos0 >0よりx=g(0) は単調増加だ dy さらに, de x=(→(う)(え)) -=h' (0)=sin0より,y=h(0) の増減表は次のようになる。 0≦y<2 (→(お), (カ)) 1 + 0 7 これより (020g+1) なお, 曲線Cの概形は次のようになる。 O 2 2 0.200 大阪 dy d0-> 2cos2d0-4sin-4sin (4) Pr(t+sint, 1-cost) 0=1のとき 方程式は sint = 1+cost y-(1-cost) - do (-4431) sint dt 1+cost であるから、もの (x-(t+sint)) (0<K<x) ここで,y=0とおくと, (1-cos't) =sintlx-(1+sin()), sint*0より よって -(1-cos³t) sint +(t+sint) =-sint+ (t+ sint) =t (→()) Qi(t. 0) =OP-OQ Q.P= = (t+sint, 1-cost) - (t, 0) = (sint, 1-cost) 2. =(2sin/12 cos/122sin2-12) = 2 sin 27 (cos 27. sin 172) ...... ① 0 (-π) 0 (π) dy nie. 0 do Ob y 2 となるので、Q.P がx軸の正の向きとなす角は 12 ラジアン( 10203-1 0 (-π) ... 20 x 一π x y 2 π (π) 0 V 0 V π 2 とする。また,P, Q 接線がそれぞれPi, Q 接線に移動した (5) 回転する前のC上の点Pがx軸との接点になったときの曲線をC とする。このとき t OP' = L (t) = 4 sin 2 dx (3) + do (d)² = (1 + cos 0)² + (sin 0) 2 =2(1+cos0)=4cos' 0≧≦t<zにおいてcos->0であるから 20 8-2 ①よりP/Q=PQ=2sin であるので OQ=OP-P/Q=4sin/2-2sin/2 = 2 sin/20 また,Q,R, OQtであることと,(4)の結果より

回答募集中 回答数: 0
1/20