基本 例題 184 相関係数による分析
右の表は, 10名からなるある少人数クラスで
100点満点で2回ずつ実施した数学と英語のテ
ストの得点をまとめたものである。
(1) 数学と英語の得点の散布図を 1回目, 2
回目の各回についてかけ。
(2)1回目の数学と英語の得点の相関係数を 1,
00000
目
2回目
番号 数学 英語 数学 英語
12
40
43
60
54
63
55
61 67
3
59
62
56
60
4
35
64
60 71
5
43
36
69
80
6
36
48
64
7
51
46
54
57
57
71
59
32
65
49
42
① (0.54, 0.20)
②(-0.54, 0.20)
10
34
50
57
69
3 (0.20, 0.54) ④ (0.20, -0.54)
基本182
2回目の数学と英語の得点の相関係数を2
とするとき,値の組 (r1, r2) として正しいも
のを以下の① ~ ④から1つ選べ。
890
5005446
指針▷ 与えられたデータから相関係数を選ぶ問題では,相関係数の組が与えられているから直
接計算をする必要はない。 ここでは, (1) 散布図をかくから,それをもとに判断する。
[参考] 散布図において,点の配列にできるだけ合うように引いた直線を回帰直線という
解答
(1) [図] 1回目
(点) 100
90
80
70
英語
60
0
0805043020100
英語
10
2回目
(点) 100
40
3887850302000
90
581 ER
60
SS
0 10 20 30 40 50 60 70 80 90 100
数学
0 10 20 30 40 50 60 70 80 90 100
数学
(点)
t
(2) 2回目の散布図より、 2回目の数学と英語の得点には
花の相関関係があるから 12>0
また、1回目と2回目の散布図より 1回目の方が2回
目よりも相関が弱いから
<n2
以上から、 値の組は 3 (0.20, 0.54)
散布図において, 点が右上が
直線(右下がりの直線) 上お
その近くに分布しているほど
が強いといい, 直線上ではな
くばらついているほど相関が
という
$se