学年

教科

質問の種類

数学 高校生

どうしてこれ右の皿に1個のせることは左の皿に−1個のせることになるのですか? 最初に左の皿に3g,8gの分銅をのせることにしてるのに、なぜ答えでは右の皿に3g、左の皿に8gってなってるのですか? 教えてください。お願いいたします。

教 練習 32 教 p.157 天秤ばかりを用いて, ある物体X の質量が10gであることを確か 止めたい。 使える分銅が3g, 8gの2種類のみであるとき, 使う分 銅の個数が最も少なくなるような分銅ののせ方を求めよ。 ただし, 天秤ばかりの右の皿に物体Xをのせるとする。 指針 1次不定方程式の利用 右の皿に物体X をのせ、左の皿に3gの分銅をx個 8gの分銅をy個のせたら天秤がつり合うとする。 ただし, 右の皿に1個の せることは,左の皿に分銅を (-1) 個のせると考える。 解答 右の皿に物体X をのせ、左の皿に3gの分銅をx個, 8gの分銅をy個のセ たら天秤がつり合うとする。 ただし, 右の皿に1個のせることは,左の皿に 分銅を (1) 個のせると考える。 このとき 3x+8y=10 ① x=-2, y=2は,①の整数解の1つである。 よって ①-② から すなわち 3・(-2)+8・2=10 3(x+2)+8(y-2)=0 3(x+2)=-8(y-2) ② ③ 3と8は互いに素であるから, x+2は8の倍数である。 よって, kを整数として, x+2=8k と表される。 これを③に代入して y-2=-3k したがって, ① のすべての整数解は x=8k-2,y=-3k+2 (k は整数) 使う分銅の個数は|x|+|y|であり,これが最も少なくなるようなんは k=0 よって x=-2,y=2 したがって, 右の皿に3gの分銅を2個, 左の皿に8gの分銅を2個のせる。

解決済み 回答数: 1
数学 高校生

題意からn番目のバスで到着した患者で最小の整理券を貰った患者の待ち時間を求める問題で解答では写真の様に4(n^2-n/2+1)〜となっていますが、()の+1は自分の診察時間も含めてしまうので要らないと思ったのですがどうでしょうか

[1] ある病院では午前9時からの診察に対して, 病院に午前8時に到着する送迎バ スから午前9時30分に到着するものまで、合わせて10便の送迎バスを10分間隔 で運行し,早く来た患者から順に1番、2番、3番の整理券を渡し,整理券の 番号の順に診察することとしている。診察は午前9時ちょうどに始め,1人につき 4分で終了し,終了すると直ちに次の患者の診察が始まるとする。 ある日, 来院し た患者はすべて送迎バスを利用し, k番目の送迎バスには人の患者が乗っていた (k=1,2, ..., 10)。 1.0 60.6010. 55.0 Fra 便名 到着時刻 患者数 整理券番号 180円 221.21.10 1 8:00 1人 1 exes. s. 68 2 8:10 2人 2,3 $235 ESAS, AQ ress. rass. 3.0 0825. 1.0 EETE, 1801 1803 180E 8:20 3人 4,5,6 es. 186. 18.0 BIE.IE. 2.0 ... : 0288. 10188.00 10 9:30 10人 21CD Tees 08 erep, 2081 erse. COSE. EDGE II S.I 0. SCOD SSSA (1) この日発行された整理券で最も番号の大きいものはアイ 番であり,この整 理券を受け取った患者は9時30分に到着してから診察が始まるまで ウエオ 分待つこととなる。 まで 186 BEA (数学II・数学B 第4問は次ページに続く。) 028 DEBA 1881 DEBA 8087 each se 1.4=216

未解決 回答数: 1
1/38