学年

教科

質問の種類

数学 高校生

3番の答えの矢印のとこがわかりません

基礎向 第3章 2火 26 1次関数のグラフ (2)(i) (0)=|01|+2=|-1|+2=3 (2)=|2-1|+2=1+2=3 f(4)=|4-1|+2=3+2=5 (i) 0≤x≤35, -1x-12 よって, z-12. 2≦x-1+2≦4 O≦x<1のとき ところを考え 1≦|x-1|≦2 (1)次の方程式のグラフをかけ. (i)g=1 (i)x=2() y=-x+2) (iv)g=2x-1 (2) 関数f(x)=-1+2について、次の問いに答えよ。 (i) f(0),(2)(4) の値を求めよ. (定義域が0k3のとき, 値域を求めよ. (1) 座標平面上の直線は、次の2つのどちらかの形で表せます。 ①y=mx+n ② x=k ①は傾きで点(0,n) を通る直線を表します。 ②は点(k, 0) を通り, y 軸に平行な直線を表します. ②は傾きをもたない 2) y=f(x)において,のとりうる値の範囲を定義域, その定義域に対応し て決まるf(x) (すなわち,y) のとりうる値の範囲を値域といいます。 (1)(i) 94 解答 (ii) y |x=2 よって, 値域は, 2≦f(x)≦4 注 (答) 定義域の両端の f(0)=3,f(3)=4だから, 値域は 3≦f(x)≦4 値を求めても値 とは限らない 11で学んだ絶対値記号の性質を利用して, y=f(x) のグラフをかいて, 値域を求めてみましょう x-1 (x≧1) |x-1|= だから, -(x-1) (x<1) 0≦x≦の範囲において、 f(x)={\ +1 (1≤x≤3) 1-1+3 (053≤1) よって, f(x)=x-1|+2 のグラフは右図のよう になるので,求める値域は 2≤ f(x)≤4 Y 0 2 y=1 xC 0 2 18 (iv) y /y=2x1 1 ポイント 関数の値域は、定義域の両端のyの値を調 は不十分. グラフをかいて求める 演習問題 26 その問いに笑

未解決 回答数: 1
数学 高校生

記述が解説に比べ淡白だったんですが問題ないですか? また図の点線部分って必要ですか?

110 基本例題 64 絶対値のついた1次関数のグラフ (1) 関数y=|x-2|のグラフをかけ。 指針 絶対値のついた関数のグラフ 次の ① ② に従い, まず 記号 | |をはずす。 ① A≧0のとき [A]=A ② A<0のとき |A|=-A そのままはずす 場合分けの分かれ目は,||内の式が0となるときである。 ここでは,x-2=0 すなわち x=2が場合の分かれ目になる。 解答 x-2≧0 すなわち x≧2のとき y=x-2 x-2<0 すなわち x<2のとき ****** y=-(x-2) ゆえに y=-x+2 よって, グラフは右の図の実線部分。 2 (x2) y=lx-2|を y=-x+2(x<2) のように表すこともできる。 CHART 絶対値 場合に分ける分かれ目は | |内の式=0x をつけてはずす ②2 ① で分けた場合ごとに関数のグラフを考え, それらを合わせる要領でもとの関数のグラフをかく。 <検討 絶対値のついた関数のグラフのかき方 絶対値のついた関数のグラフをかくには, 次の手順で進めるとよい。 ① まず, A≧0のとき |A|=A A <0のとき |A|=-A に従って場合分けをし、 絶対値記号をはずす。 なお,y=∫(x)|の形の関数のグラフは f(x)≧0のとき |∫(x)=f(x), f(x)<0のとき |∫(x)|=-∫(x) 例えば、関数y=x-2のグラフについて , であるから, y=f(x)のグラフでx軸より下側の部分を軸に関して 対称に折り返すと得られる。 基本39 y≧0の部分 <0の部分をx軸に関して対称に折り返したもの•••••• とすると人とを合わせたものが,y=|x-2|のグラフである。 00000 y4 「基本120 1) - をつけてはずす。 2) x≧2のとき, グラフは右 上がりの実線部分。 ··· 0 x<2のとき, グラフは右 下がりの実線部分。······ F →1,②を合わせたものが 関数y=|x-2|のグラフ。 p.68~69 で学んだ, 絶対値のついた 方程式と同じ要領。 Ⓡ x-2<020 -2 2 y=|x-21 -4+6 12 y=x-2 <0の部分 を折り返す

未解決 回答数: 1
1/3