学年

教科

質問の種類

数学 高校生

なんで2番の問題はK=0とかあるんですか?

次のxについての方程式の解を判別せよ.ただし,kは実数と する. (1) 2-4x+k=0 精講 (2) kx²-4x+k=0 16-484 16-4k 「解を判別せよ」とは,「解の種類(実数解か虚数解か) と解の個数 について考えて,分類して答えよ」という意味です。ということは、 (1) (2)も2次方程式だから, 判別式を使えばよい!!」と思いたくな るのですが、はたして…...... 次のように分類できる. (i)4-k0 すなわち, k<-2,2<kのとき D<0だから, 虚数解を2個もつ (ii) 4-k=0 すなわち,k=±2 のとき D = 0 だから重解をもつ () 4-k20 すなわち, -2<k<2 のとき D> 0 だから, 異なる2つの実数解をもつ (ア)(イ)より, k= 0 のとき, 実数解1個 FOR 8 k<-2,2くんのとき, 虚数解 2個 k=±2 のとき,重解 2<k<0,0<k<2のとき, 異なる2つの実数解 注 (2)のk=0 の場合と k=±2 の場合は,いずれも実数解を1個も一 ているという意味では同じように思うかもしれませんが, 2次方程 の重解は活字を見てもわかるように元来2個あるものが重なった状態 を指し, 1次方程式の解は、元来1個しかないのです。 だから, 答案 は区別して書かないといけません. 仮に,「kx²-4x+k=0が異な 解をもつ」 となっていたら 「k≠0 かつ D≠0」 となります. 問題文の1行目をよく読んでください. 「次のxについての方程式・・・・・・」 とあります. 「次のxに いての2次方程式 ・・・・・・」とは書いてありません. よって, の方程式は k= 0 となる可能性が残されているのです. だから, のxについての2次方程式…………」 となっていたら、 すでに 「k≠0_ 前提になっていることになり, 解答の ) は不要となります. (1) 2-4x+k=0 の判別式をDとすると, D 4 =4-k だから. この方程式の解は次のように分類できる. (i) 4-k<0 すなわち, k>4のとき DO だから、虚数解を2個もつ D<0 (靴) (ii) 4-k=0 すなわち,k=4のとき D=0 だから,重解をもつ D=0 参考 (i) 4-k>0 すなわち, ん<4のとき <D>0 D> 0 だから, 異なる2つの実数解をもつ (i)~ (ii)より, k>4 のとき, 虚数解2個 k=4 のとき, 重解 しん<4のとき、 異なる2つの実数解 (2) (ア)=0 のとき k=0のときは1次 与えられた方程式は4x=0 (イ)のとさ .. x=0 kx2-4x+k=0 の判別式をDとすると D=4k だから、この方程式の解は 4 方程式なので判別式 は使えない ポイント 判別式は2次方程式でなければ使えないので, 2 数が文字のときは要注意 演習問題 17 (1) 2-(k+1)x+k2=0 を実数とするとき,次の2次方程式の解を判別せよ. (2) kx2-2kx+2k+1=0

未解決 回答数: 1
数学 高校生

符号についてです。 青線部にイコールがつかなくて、赤線部イコールがつく理由がわからないので教えて欲しいですm(_ _)m

32 第1章 数と式 基礎問 18 絶対値記号のついた1次方程式 次の方程式を解け. (1) |-1|=2 (2) | x+1|+|-1|=4 絶対値記号の扱い方は11で学んだ考え方が大原則ですが、 等式の場 合はポイントⅠの考え方が使えるならば, 場合分けが必要ない分だ けラクです. (1) (解I ) |x-1|=2より, π-1=±2 よって, x=-13 (解Ⅱ) 解答 |-1|={ r-1 (x≥1) だから, (x-1) (1) i) ≧1のとき 与式より æ-1=2 x=3 これは, r≧1 をみたす。 はじめに仮定し ii) <1 のとき た≧1をみた 与式より(x-1)=2 すかどうかのチ 1 これは, z <1 をみたす。 ェックを忘れな よって, x=-1,3 いこと (2) i) <-1のとき x+1<0, x-1 < 0 だから |r+1|+|r-1|=4 より (z+1)(x-1)=4 -2x=4 x=-2 これは, r<-1 をみたす. i) のとき +10, 10 だから 33 |x+1|+|x-1|=4 より x +1- (x-1)=4 ∴.0.x=2 これをみたすは存在しない 道) 1<zのとき x+1>0, 1>0 だから |z+1|+|-1|=4 より x+1+z-1=4 2x=4 .: x=2 これは, 1<x をみたす. i), ii), )より, x=±2 方程式をみたすェを さがすのでxは式に 残しておく 参考 A(-1), B(1), P (x) とおくと, x+1|=AP, |r-1|=PB だから 与式は, AP+PB=4 -2 3 B + 0 1 2 3 上の数直線により, 次のことがわかります. ① -1≦x≦1 のとき, xの値にかかわらず, AP+PB=2 ② x>1のとき が大きくなるにつれて, AP+PB の値も大きくなる. ③ x<-1のとき が小さくなるにつれて, AP+PB の値は大きくなる. ポイント 演習問題 18 1.|x|=a (a≧0) のとき, x=±α A (A≧0 ) 4 II. A=-A (A<0) 次の方程式を解け、 (1) |-1|=|2x-3|-2 (2) ||x|-1|=3 第1章

解決済み 回答数: 1
数学 高校生

波線を引いたところについて質問です なぜg>0になるのですか?

補足 0. 1次不定方程式の整数解が存在するための条件 6は0でない整数とするとき,一般に次のことが成り立つ。 +by=1 を満たす整数x,yが存在するαともは互いに素………(*) このことは, 1次方程式に関する重要な性質であり, 1次不定方程式が整数解をもつかど うかの判定にも利用できる。 ここで, 性質 (*)を証明しておきたい。 まず,⇒については,次のように比較的簡単に証明できる。 (*)のの証明] ax+by=1 が整数解 x=m, y=n をもつとする。 また,aとbの最大公約数をg とすると a=ga', b=gb′ と表され am+bn=g(a'm+6'n)=1 g=1 よって,gは1の約数であるから したがって,aとは互いに素である。 ◆aとbの最大公約数が 1となることを示す方 針。 p.397 基本例題 103 (2) 参照。 α'm+b'n は整数, g>0 433 一方の証明については,次の定理を利用する。 4章 aとbは互いに素な自然数とするとき, 6個の整数 a1,a2, a 3, ・・・..., ab をそれぞれ6で割った余りはすべて互いに異なる。 証明 i, jを 1≦i<j≦b である自然数とする。 ai, aj をそれぞれ6で割った余りが等しいと仮定すると背理法を利用。 aj-ai=bk (k は整数)と表される。 よって a(j-i) =bk 差が6の倍数。 aとは互いに素であるから, j-iはもの倍数である。... ①p, gは互いに素で, pr しかし, 1≦j-i≦b-1 であるから, j-iは6の倍数にはな がqの倍数ならば, rは gの倍数である(p,a, rは整数)。 5 らず,①に矛盾している。 est したがって,上の定理が成り立つ。 t [(*)のの証明] 15 ユークリッドの互除法 aとbは互いに素であるから,上の定理により6個の整数α・1,上の定理を利用。 a•2, a·3,......., ab をそれぞれ6で割った余りはすべて互いに 異なる。 ここで,整数を6で割ったときの余りは 0, 1, 2, 6-1のいずれか(通り)であるから, akをbで割った余りが 1となるような整数ん (1≦k≦b)が存在する。識は akをbで割った商を1とすると ak=6l+1 すなわち ak+6(-1)=1 よって, x=k, y=-l は ax + by = 1 を満たす。 すなわち, ax+by=1 を満たす整数x, y が存在することが示 された。 このような論法は, 部屋 割り論法と呼ばれる。 詳しくは次ページで扱 ったので、読んでみてほ しい。

未解決 回答数: 1
1/37