学年

教科

質問の種類

数学 高校生

(3)の解説の線が引いてあるところの式がなぜそうなるのか教えて欲しいです!!

94 最大値・最小値の図形への応用 右図のように、1辺の長さが2a (a>0)の正三角形 から,斜線を引いた四角形をきりとり,底面が正三角 形のフタのない容器を作り, この容積をVとおく. (1)容器の底面の正三角形の1辺の長さと容器 の高さをxで表せ. (2)のとりうる値の範囲を求めよ. 2Q-ZA -2a (3)Vxで表し,Vの最大値とそのときのxの値を求めよ. |精講 式 149 ce 最大値、最小値の考え方を図形に応用するとき、変数に範囲がつく ことを忘れてはいけません. この設問では(2)ですが, 考え方は「容 器ができるために必要な条件は?」 です. ・正三角形60℃の 解答 (1) 底面の1辺の長さは2a-2x,また また,きりとられる X この 部分は右図のようになるので,高さは 3 ->0 だから √3 容器ができるための (2) 容器ができるとき 2a-2.x>0,773 0<x<a (3) V=(2(a-x)) sinx IC 条件としての範 =x(x-a)=x-2ax2+ax V'=(x-a)(3x-α)より, 囲がつく a I 0 ... a 30 0 V' + x=1/32 のとき,最大値をとる。 V 7 1- ポイント 図形の問題で,最大、最小を考えるとき,範囲に注意 A30 演習問題 94 底面の半径と高さんがr+h=a(a>0の定数)をみたす円す いの体積をVとするとき,Vの最大値を求めよ. 第6章

解決済み 回答数: 1
数学 高校生

この問題についてなのですが、別解(2ページ目)で解いた時に、√6となってしまい解けません。やり方が違うのでしょうか?それとも、√6になって解けないから進研ゼミは1ページのようなやりかたで解いているのでしょうか? 解説お願いいたします🙇🙏🙌

step 1 題でをつかむ アプローチ これを考える際にも利用できる。 とらえた特徴をもとに数学化する イメージ ( 例題あるタワーの近くに右の図のような長方形 ABCD の水平なマラソンコースがあり、頂点 A の地点に、地面に垂直なタワーが建っている。 C D 太郎さんがこのマラソンコースを地点Dから地点Aに向かって走っているとき、途中の地点Eで引 ワーの頂上を見上げたときの角度は66°であった。さらに地点Aに向かって走り、途中の地点 再びタワーの頂上を見上げたところ、その角度は78°であった。また,地点からタワーの頂上 を見上げたときの角度は30地点Dからタワーの頂上を見上げたときの角度は45℃であった。こ のとき、次の問いに答えよ。 ただし、太郎さんの目の高さは考えないものとする。 (1) タワーの高さをん (m) とする。 太郎さんが地点EとFの間にいるときの地点までの距離を (m) とするときのとりうる値の範囲はア である。 ア }に当てはまるものを、次の⑩ ⑤ のうちから一つ選べ。 角度の情報から、 「地点までの距離」 と 「タワー の高さ」の関係は三角比を用いて表せることが わかる。 よって,(1)では, FA <ょくEA となる ことから, FAやEAを三角比とを用いて表せ ばよい。 さらに(2)では,地点C,Dでタワーの 上を見上げたときの角度から, CAやDAを を用いて表すことができる。このことを用いて、 △ ACD について注目して見てみよう。 ア に当てはまる記号は ( ) イウエ オに当てはまる数値は ( 下の解説を見て、答え合わせをしよう。 タワーの頂上をGとおく。 (1) ∠GEA=66° <GFA=78°, GA = h ここで、 GA EA GA =tan66°, =tan78° より FA h h EA= FA= tan 66* tan 78° <r< tan 66° R FA<x<EAより, tan 78 ksin66" << hsin78° ktan66" <x<htan78" kcos78° <x<hcos66° くさく sin 78° sin 66° h h COS.66 COS 78 B tan 78° tan 66 (2) 地点 A.B間の距を400m とするとき, タワーの高さはイウエ 21.414 とする。 66 78 D E F A タワーの高さ E (m) 数 <DGA=450 DA Tanks th よって 5 ・アの (答) (2)(1)と同様に, GADにおいて, GDA = 45° より DA= D totny) GA tan 45] GA 3 h tan 30 また、GACにおいて, <GCA=30°より, CA = △ ACD において、 三平方の定理より, CD+DACA”が成り立つので, CD=AB=400(m)から、 オである。ただし, 400+h=3h これを解くと,h=200/2 200 x 1.414 = 282.8 (m) ・・ イウエオの (

解決済み 回答数: 2
数学 高校生

ペンで囲っている部分の変形が何故こうなるのかわからないです…教えてください。

O 24 ◯◯ 三角比の利用 Style 15 ある地点Aから木の先端Pの仰角を測ると30° であった。 また, 木 に向かって水平に10m進んだ地点BからPの仰角を測ると45°で あった。この木の高さを求めよ。 [06 産能大] 右の図のように木の高さをPQ=h(m) とおく。 Key 三角比を用いて △APQ は直角三角形であるから P AQ, BQ をんで表し、 (6- PQ tan 30°= AQ 大 AQ=AB+BQ から, ん を求める。 PQ 130° 45° ゆえに AQ= tan 30° A 10m B Q =√3h (m) また, △BPQも直角三角形であるから tan 45°= _ PQ BQ PQ ゆえに BQ= =h (m) tan 45° [参考] △BPQ は直角 二等辺三角形であるから, BQ=PQ=hとして, 10 したがって h=- = よって, AQ=AB+BQ より √3-1 (√3-1) (√3+1) √3h=10+h BQ を求めてもよい。 10(√3+1) 10(√3+1) 2 5√3+5(m) Same ある地点Aから塔の先端Pの仰角を測ると30°であった。 次に, 塔 Style 15 に向かって水平に15m進んだ地点BからPの仰角を測ると60°で あった。 塔の高さ PQ を求めよ。 [06 岐阜経大 ] ●Complete 29 10分 30 20分 *29 △ABCにおいて, 辺BC上に点Hがあり, 線分AH と辺BC は垂直であ るとする。 AB=√13, AH=3,BC=7 のとき, sin B, cosCの値を求めよ。 [08 愛知工大] 30 傾斜が 30°で一定の坂の頂上に塔が立っている。 坂のふもとからこの塔の 先を見ると, 水平面に対して 45°の角度に見えた。 坂を斜面に沿って塔に向 かって 30m 進んだA点から再び塔の先を見ると, 水平面に対して 60°の角 度に見えた。

解決済み 回答数: 1
数学 高校生

マーカーのところで、切り口の面積って、楕円を半分にしたみたいなところの面積で合ってますか? あと、S(x)と△OHCを比べる理由が分かりません。マーカーの2行目は何をしているんですか? 解説をお願いします🙇‍♀️

444 基本 例題 271 断面積と立体の体積(2)東面 ○○○○ 底面の半径 α, 高さの直円柱をその軸を含む平面で切って得られる半円柱があ ある。底面の半円の直径を AB, 上面の半円の弧の中点をCとして, 3点 A, B, C を通る平面でこの半円柱を2つに分けるとき,その下側の立体の体積Vを求め O よ。 基本 270 重要 281 282 285 指針基本例題 270と同様立体の体積 断面積をつかむ夢と。 立 の方針で進める。 図のように座標軸をとったとき、題意の立体は図の青い部分 であるが,この断面積を考えるとき, 切り方によってその切 り口の図形が変わってくる。 [1] x軸に垂直な平面で切る [2] y 軸に垂直な平面で切る は ! 切り口は直角三角形 切り口は長方形 料金 B [3] 軸に垂直な平面で切る (底面に平行な平面で切る ) ここでは, [1] の方針で進める ([2], [3] の方針は 検討 参照)。 nie y=(x), y=g(x) [S(x) / 切り口は円の一部 a a A うるす 解答 図のように座標軸をとり, 各点を定める。 x軸上の点D(x, 0) を通り, x軸に垂直 な平面による切り口は直角三角形 DEF である。 F -a E y a いときは、 B H a このとき, △DEF∽△OHCであり 0 -IDE:OH=√d-x : a |x| a A x ゆえに、切り口の面積をS(x) とすると 200S(x):△OHC= (√a-x2)2:29 よって S(x)=2 a-x2ab_ b (a²-x²) 2a 対称性から、 求める立体の体積Vは ab DEF=∠OHC=- $ 200 ZFDE=ZCOH 線分比がα:b 21 ⇒面積比はα:b2 =ab AOHC=ab v=25s(x)dx=2S02/27(a-x)dxv=S_s(x)dx = --- 2 = a²b a 3 ー =2f(x)dx

解決済み 回答数: 1
数学 高校生

解答では、それぞれの長さを変数でおいてから、相似比で1変数に直していますが、別解として、θを設定して1変数関数として求めることは出来ますか?できれば答えまで示して欲しいです

ENGRENS. 4K 89 重要 例題 104 最大・最小の応用問題 (2) 題材は空間の図形 ①①①① 半径1の球に,側面と底面で外接する直円錐を考える。この直円錐の体積が最 基本 103 小となるとき, 底面の半径と高さの比を求めよ。 指針立体の問題は,断面で考える。→ここでは,直円錐の頂点と底面の円の中心を通る平 面で切った 断面図 をかく。 問題解決の手順は前ページ同様 ① 変数と変域を決める。 2 量(ここでは体積) を で決めた 変数で表す。 3 体積が最小となる場合を調べる (導関数を利用)。 であるが,この問題では体積を直ちに1つの文字で表すことは難しい。 そこで,わか らないものはとにかく文字を使って表し, 条件から文字を減らしていく方針で進める。 50-0 直円錐の高さをx, 底面の半径を r, 解答 体積をVとすると, x2 であり A TATR)S (高さ)> (球の半径) x2 から。 7= ...... ① x 3 D 球の中心を0として,直円錐をその 頂点と底面の円の中心を通る平面で 切ったとき,切り口の三角形ABC, および球と △ABC との接点 D, E を 右の図のように定める。 (Onie-nia +(1+8203)8 200/ △ABE∽△AOD (*) であるから AE: AD=BE:OD B --E C (*) △ABE と △AODで ∠AEB= ∠ADO=90° ∠BAE = ∠OAD (共通) 26 すなわち x:√(x-1)2-12=r:1 (1+0 2000 2001 0200S) (1+0 200) 対応する辺の比は等しい。 AD は, 三平方の定理 を利用して求める。 x よって r= 2) √x²-2x ②①に代入して V=π 2 x π x •x= 3 dV π2x (x-2) -x2・1 x-2 πx(x-4) • 3(x-2)2 よって dx = 17 3 (x-2)2 dv = 0 とすると, x>2であるから x=4 dx x>2のときVの増減表は右のようになり、 体積 V はx=4のとき最小となる。 このとき, ②から r=√2 ゆえに, 求める底面の半径と高さの比は r:x=√2:4 Vをx (1変数) の式に 直す。 () u'v-uv v.2 x 2 4 dv 4 20 dx V 極小 +

解決済み 回答数: 1
1/150