学年

教科

質問の種類

数学 高校生

ペンで囲っている部分の変形が何故こうなるのかわからないです…教えてください。

O 24 ◯◯ 三角比の利用 Style 15 ある地点Aから木の先端Pの仰角を測ると30° であった。 また, 木 に向かって水平に10m進んだ地点BからPの仰角を測ると45°で あった。この木の高さを求めよ。 [06 産能大] 右の図のように木の高さをPQ=h(m) とおく。 Key 三角比を用いて △APQ は直角三角形であるから P AQ, BQ をんで表し、 (6- PQ tan 30°= AQ 大 AQ=AB+BQ から, ん を求める。 PQ 130° 45° ゆえに AQ= tan 30° A 10m B Q =√3h (m) また, △BPQも直角三角形であるから tan 45°= _ PQ BQ PQ ゆえに BQ= =h (m) tan 45° [参考] △BPQ は直角 二等辺三角形であるから, BQ=PQ=hとして, 10 したがって h=- = よって, AQ=AB+BQ より √3-1 (√3-1) (√3+1) √3h=10+h BQ を求めてもよい。 10(√3+1) 10(√3+1) 2 5√3+5(m) Same ある地点Aから塔の先端Pの仰角を測ると30°であった。 次に, 塔 Style 15 に向かって水平に15m進んだ地点BからPの仰角を測ると60°で あった。 塔の高さ PQ を求めよ。 [06 岐阜経大 ] ●Complete 29 10分 30 20分 *29 △ABCにおいて, 辺BC上に点Hがあり, 線分AH と辺BC は垂直であ るとする。 AB=√13, AH=3,BC=7 のとき, sin B, cosCの値を求めよ。 [08 愛知工大] 30 傾斜が 30°で一定の坂の頂上に塔が立っている。 坂のふもとからこの塔の 先を見ると, 水平面に対して 45°の角度に見えた。 坂を斜面に沿って塔に向 かって 30m 進んだA点から再び塔の先を見ると, 水平面に対して 60°の角 度に見えた。

解決済み 回答数: 1
数学 高校生

マーカーのところで、切り口の面積って、楕円を半分にしたみたいなところの面積で合ってますか? あと、S(x)と△OHCを比べる理由が分かりません。マーカーの2行目は何をしているんですか? 解説をお願いします🙇‍♀️

444 基本 例題 271 断面積と立体の体積(2)東面 ○○○○ 底面の半径 α, 高さの直円柱をその軸を含む平面で切って得られる半円柱があ ある。底面の半円の直径を AB, 上面の半円の弧の中点をCとして, 3点 A, B, C を通る平面でこの半円柱を2つに分けるとき,その下側の立体の体積Vを求め O よ。 基本 270 重要 281 282 285 指針基本例題 270と同様立体の体積 断面積をつかむ夢と。 立 の方針で進める。 図のように座標軸をとったとき、題意の立体は図の青い部分 であるが,この断面積を考えるとき, 切り方によってその切 り口の図形が変わってくる。 [1] x軸に垂直な平面で切る [2] y 軸に垂直な平面で切る は ! 切り口は直角三角形 切り口は長方形 料金 B [3] 軸に垂直な平面で切る (底面に平行な平面で切る ) ここでは, [1] の方針で進める ([2], [3] の方針は 検討 参照)。 nie y=(x), y=g(x) [S(x) / 切り口は円の一部 a a A うるす 解答 図のように座標軸をとり, 各点を定める。 x軸上の点D(x, 0) を通り, x軸に垂直 な平面による切り口は直角三角形 DEF である。 F -a E y a いときは、 B H a このとき, △DEF∽△OHCであり 0 -IDE:OH=√d-x : a |x| a A x ゆえに、切り口の面積をS(x) とすると 200S(x):△OHC= (√a-x2)2:29 よって S(x)=2 a-x2ab_ b (a²-x²) 2a 対称性から、 求める立体の体積Vは ab DEF=∠OHC=- $ 200 ZFDE=ZCOH 線分比がα:b 21 ⇒面積比はα:b2 =ab AOHC=ab v=25s(x)dx=2S02/27(a-x)dxv=S_s(x)dx = --- 2 = a²b a 3 ー =2f(x)dx

解決済み 回答数: 1
数学 高校生

解答では、それぞれの長さを変数でおいてから、相似比で1変数に直していますが、別解として、θを設定して1変数関数として求めることは出来ますか?できれば答えまで示して欲しいです

ENGRENS. 4K 89 重要 例題 104 最大・最小の応用問題 (2) 題材は空間の図形 ①①①① 半径1の球に,側面と底面で外接する直円錐を考える。この直円錐の体積が最 基本 103 小となるとき, 底面の半径と高さの比を求めよ。 指針立体の問題は,断面で考える。→ここでは,直円錐の頂点と底面の円の中心を通る平 面で切った 断面図 をかく。 問題解決の手順は前ページ同様 ① 変数と変域を決める。 2 量(ここでは体積) を で決めた 変数で表す。 3 体積が最小となる場合を調べる (導関数を利用)。 であるが,この問題では体積を直ちに1つの文字で表すことは難しい。 そこで,わか らないものはとにかく文字を使って表し, 条件から文字を減らしていく方針で進める。 50-0 直円錐の高さをx, 底面の半径を r, 解答 体積をVとすると, x2 であり A TATR)S (高さ)> (球の半径) x2 から。 7= ...... ① x 3 D 球の中心を0として,直円錐をその 頂点と底面の円の中心を通る平面で 切ったとき,切り口の三角形ABC, および球と △ABC との接点 D, E を 右の図のように定める。 (Onie-nia +(1+8203)8 200/ △ABE∽△AOD (*) であるから AE: AD=BE:OD B --E C (*) △ABE と △AODで ∠AEB= ∠ADO=90° ∠BAE = ∠OAD (共通) 26 すなわち x:√(x-1)2-12=r:1 (1+0 2000 2001 0200S) (1+0 200) 対応する辺の比は等しい。 AD は, 三平方の定理 を利用して求める。 x よって r= 2) √x²-2x ②①に代入して V=π 2 x π x •x= 3 dV π2x (x-2) -x2・1 x-2 πx(x-4) • 3(x-2)2 よって dx = 17 3 (x-2)2 dv = 0 とすると, x>2であるから x=4 dx x>2のときVの増減表は右のようになり、 体積 V はx=4のとき最小となる。 このとき, ②から r=√2 ゆえに, 求める底面の半径と高さの比は r:x=√2:4 Vをx (1変数) の式に 直す。 () u'v-uv v.2 x 2 4 dv 4 20 dx V 極小 +

解決済み 回答数: 1
1/255