学年

教科

質問の種類

数学 高校生

うすくまるでかこっているところが問題によって下記かがちがくてよくわかりません。教えてください。

なったと判断できる。 28 この地域のイノシシが寄生虫Aに感染している割 よって、 区間の幅が狭いのは、信頼度95%の信頼 区間である。 合を シシの感染個体の比率は 198 396 対立仮説は すると、帰無仮説は0.55, 0.55 である。 また、 今回の調査で捕獲したイノ = 0.5 である。 1 (2) (1)より, 信頼区間の両端は 0.04 12.56 1.96 =12.56±0.01568 √25 □2 帰無仮説が正しいとすると, 標本における感染個体 0.55.0.45 の比率がの分布は正規分布 N (0.55, と 396 見なせる。 よって P(-0.55 ≥ 0.5-0.551) よって, 信頼度 95%の信頼区間は 12.54432 d≦12.57568 小数第3位を四捨五入すると, 12.54mm以上 12.58mm 以下となる。 (3) 信頼区間の幅を0.008mm以下にするから,計 測回数をnとすると, (1) より 0.55 0.05 =PI 0.55.0.45 0.55-0.45 V 396 396 =P(Z|≧2) =2P(Z≧2) =0.04550 <0.05 したがって, = 0.55 という帰無仮説は棄却される。 すなわち、この地域のイノシシが寄生虫 Aに感染し ている割合は先行調査と異なると判断できる。 Let's Challenge 2 1_(1) 標本平均の平均は母平均に等しいから E(X) = 400 標本の大きさが36であるから, 標本平均の標準 偏差は 70 0.04 2.1.96. 0.008 よって n≧384.16 ゆえに、少なくとも385回計測すればよい。 布は,正規分布 N (0, と見せる。 3 (1) 帰無仮説は m = 0, 対立仮説は m≠0 である。 (2) 帰無仮説が正しいとすると, 標本における重さ の平均から表示されている値を引いた値m' の分 2.52 225 よって P(m′-01≧ 0.32) P ( \m\ 0.32 2.5 2.5 225 SHP225 =P(Z≧1.92) =2P(Z≧1.92) 0.05486>0.05 したがって, m = 0 という帰無仮説は棄却されな いにで (1)

回答募集中 回答数: 0
数学 高校生

この問題のエ.オには0.6がはいり、カ.キには1.2が入ります。 なぜ両方の求め方で正規分布N(51.0,0.3^2)に従っているのに標準偏差の値が変わるのでしょうか、? 求め方が違うということがやかるのですがなぜ値が変わってくるのかわかりません。。わかる方いらっしゃいまし... 続きを読む

第5問 (選択問題) (配点 16) 以下の問題を解答するにあたっては、必要に応じて(第5回-16) ページの正規 分布表を用いてもよい。 統計的な推測においては、本質的に重要な性質がある。それについて考えてみよう。 (1)母集団から無作為抽出された標本の独立性とその特徴について、実際の例をもと に考える。 いま, 内容量 50g と表示された小袋が四つ入ったお菓子の袋(以下,「大袋」と呼 ぶ)があったとする。以下では、袋の重さは考えずに、お菓子の重さだけを考える ことにする。四つの小袋に入っているお菓子の重さを,それぞれ X1,X2, X3, X4(g) とし,各X, (i = 1, 2, 3, 4) は平均 (期待値) 51.0 標準偏差 0.3 の正規分布 N (51.0, 0.32) に従うとする。 このとき,Y=X1+X2+X』+X」 とおけば、各Xは互いに独立と考えてよいか ら、確率変数Yの平均はE(Y) 計算できる。 標準偏差は (Y)= アイウ エ. オ と ところで,大袋に表示されているお菓子の重さは50×4=200(g) である。これ と対比するために,小袋に分けられていない四袋分のお菓子の重さを表す確率変 数Z = 4X を考える。 ここでXは正規分布 N (51.0, 0.32) に従うとする。 このとき,確率変数の定数倍の平均と標準偏差についての関係式によれば,Zの キ 平均はE(Z) = アイウであるが,標準偏差は (Z)= カ となり,上 で求めた。 (Y) の計算結果と異なる。この差は,X1,X2, Xs, X4 が無作為標本で あり、各X; が互いに独立であることに起因している。 この例からわかるように、無作為標本の性質,すなわち,確率変数が互いに独立 な同一の分布に従っていることを理解しておくことが重要である。 (数学II,数学B,数学C第5問は次ページに続く。) (第5回13)

回答募集中 回答数: 0
数学 高校生

問題(1)の前提で出されている重さの平均12gと標準偏差4gは、問題で出されている標本平均の平均[ア]と標準偏差[イ]とで何が変わるのですか? ちなみに答えは[ア]が12、[イ]が4/√10=0.4でした。 ↑12gと4gじゃないのはなぜ? 解説に出てきた母平均と母標準偏差... 続きを読む

数学Ⅱ 数学 B 数学 C [第4問~第7問は,いずれか3問を選択し, 解答しなさい。 第5問 (選択問題) (配点 16) 以下の問題を解答するにあたっては,必要に応じて23ページの正規分布表を用 いてもよい。 また、 以下の問題では、標本の大きさ 100は十分大きいと考える。 (1) 工場A で製造されたボルト1個の重さの平 均は12.0g) 標準偏差は4.0g) である。 工場 A で製造されたボルトから無作為に大きさ100 の標本を取り出して重さを調べた。 このときボルト1個の重さの標本平均 XA は平均 ア 標準偏差 の正規分布に近似的に従う。 XA ア 12 確率変数 Y を Y = - とすると,Yは平均 ウ 標準偏差 イ 4 エ の標準正規分布に近似的に従う。 26 標本平均 XA が 12.7より大きくなる確率は0. オカである。 ア イ の解答群(同じものを繰り返し選んでもよい。 ① 0.16 ② 0.20 ③ 0.40 ④ 1.0 ⑤ 2.0 ⑥ 4.0 ⑦ 6.0 ⑧ 12.0 ⑨ 16.0 (数学II, 数学 B 数学C第5問は次ページに続く。)

回答募集中 回答数: 0
数学 高校生

高一 物理  速度の求め方と⑪の求め方を教えて欲しいです

√3+√5+15-17) (√3-√5 +√7)(-√3+√5 2+6x のア 式 ※各点を折れ線で結んではいけない。 各点の最も近傍を通るような直線または曲線を描く。 また,おもりの重さを変えたグラフは同じ軸内に記入し, 比較できるようにする。 11 v-t グラフの傾きから,それぞれのおもりについての加速度を求めよ。 ※ 加速度を求めるための値は,グラフの方眼の値から読みとる。 例えば, OS の時の速度と0.40s の時の速度を読み取り,その傾きを計算する。 計算の過程を記入すること。 0.40 「くだせれ たす おもりの重さ 0.50kg(500g ) 1.00kg (1,000g) 番号 時刻 中央時刻 t[s] t[s] 位置 変位 速度 x[cm] Ax[cm] v[cm/s] 位置 変位 速度 x[cm] Ax[cm] v[cm/s] 0 0.000 0.00 定める 0.00 0.020 0,500 ・25.0 2.50 62.5 1 0.040 0.50 2,50 0.060 0.700 17.5 2090 77215 ある 2 0.080 5.400 1.20 0.100 1,200 30.0 3.40 85.0 3 0.120 ある 2.40 8,80 0.140 1,300 32.5 [か] 4.60 115 4 0.160 3.70 13.40 0.180 2.00 50.0 4.00 110 5 0.200 5.70 17,40 0.220 2.40 60.0 4,50 11136 部 6 0.240 8.10 21.90 0.260 2,80 70.0 5.00 1125 7 0.280 10.90 26.90 0.300 3.10 7.7.5 5,30 133 18 0.320 14.00 32:20 0.340 3.500 8.75 5.60 140 9 0.360 17.50 37.80 0.380 4,100 102.5 6.10. 2153 10 0.400 21.40 43.90 |加速度の計算過程と値。 加速度の計算過程と値。 00/07 -3-

回答募集中 回答数: 0
1/8