学年

教科

質問の種類

数学 高校生

オレンジで印をつけたところについて。なんで両方ともイコールがついてるんですか?a<1の場合、a=1の場合、a>1の場合のように区別するんじゃないんですか?

40 72次関数の最大・最小/定義域が一定区間 αを定数とする. 2次関数y='ー2ax+3の0≦x≦2における最大値 M (α) を, 最小値をm(a) とする.M(a), m (α) を求めよ. またM(α) -m (a) の最小値を求めよ. ( 類 摂南大) v=d(x-p2qのグラフ m 2 平方完成 2次関数の値の変化の様子をとらえるには, y=d(エーp)2+qの形 (平方完成) にすることが絶対的であって (ェが1か所にしか登場しないので, 関数値の変化の様子がよく 分かるようになる), 関数値は 1/4 d>0 d<0....... |ーカが大きいほど小さくなる d0.......が大きいほど大きくなる というように変化することが分かる. d<0 g-- 9 0 P x 70 P 最大・最小 下に凸 (2次の係数が正) の場合、区間α ≦x≦ β における最大・最小は下のよう. v=f(x) 最大はこれらを使って ① (軸) (軸) ② ③ ④ 最小 最大 (6) 最小 最小 最大 最大: 最大: Ü v v Û Û Û Ü け f= fla 05 a 0 x α Bx x a B α B x a B x 最小はこれらを使って 区間の中点 最小値は, 対称軸が区間内であれば頂点の座標 (上図②), なければ対称軸に近い方の端点のy座標 である (1, 3). 最大値は, 対称軸から遠い方の端点のy座標, つまり対称軸が区間の中点より左側に あればf (B) (④, ⑤), 右側にあればf (α) (⑥ ⑦) である. +B 2 ■解 fl: グラン 解答 f(x) =ュー2ax+3 ア とおくと, f(x) = (x-α) -α+3であるから, y=f(x)のグラフは下に凸で,軸はx=αである. 区間 0≦x≦2 における最大値は, 区間の中点がx=1であることから, a≦1 のとき,M(α)=f(2)=-4a+7 (アに代入した) 1≦a のとき,M(α)=f(0)=3 また, 0≦x≦2における最小値は, 軸が区間に入るかどうかに着目して 0≦a≦2のとき, m(α)=f(a)=-α2+3 [注] M(α), m (α) はαで表され ることから,M (α) -m (α) は a の関数と見ることができる. 軸と区間の中点の位置関係で場 合分けする(上図 ④と⑤のケース と, ⑥と⑦のケースとで場合分 け)。 上図の② ①③で場合分けする. つぎ ここ b a<0 のとき,m(a)=f(0)=3 2<a のとき, m(α)=f(2)=-4a+7 以上からM (α), m(a), M(α) -m (α) は次のようになる. 直線 b=-4a+4 であ よ ■m (α) の場合分 [0≤a≤2 図 1 直線 b=44-4 けは,a≦0 12≦a a M(a) m(a) M(a)-m(a) a<0 0≤a≤1 -4a+7 3 -4a+7 -a²+3 -4a+4 (a-2)² 1≤a≤2 2<a 3 3 -a²+3 -4a+7 a² 4a-4 b=a2 b=(a-2)2 0 2 a としてもよい。 境界のα=0, 2 では2つの m(α) の式で通 用し、 同じにな るかでミスを チェックできる. b=M(a)-m(a) のグラフは右図のようになるから, α=1のとき最小値1 07 演習題 (解答は p.56) a を実数とする.y=a(x-a)+1の-1≦x≦2における最大値Mを求めよ。 (愛知医大・看護)の符号にも注意する。

解決済み 回答数: 1
数学 高校生

この問題で、どうしてk=2、a=2と出たのに実数解を持たないことがあるのですか? 注意を読んでもよくわからないので教えてください! それと、[2]で、k=-6と出たのに、kを代入して確かめるのですか? a=2になったのだからx=2が確定したわけではないのですか?

重要 例 102 2次方程式の共通解 171 ①のののの 2つの2次方程式 2x2+kx+4=0, x+x+k=0がただ1つの共通の実数解をも つように定数kの値を定め、その共通解を求めよ。 指針 基本97 2つの方程式に 共通な解の問題であるから,一方の方程式の解を求めることができ たら、その解を他方に代入することによって、定数の値を求めることができる。 しか し、この例題の方程式ではうまくいかない。 このような共通解の問題では、次の解法 が一般的である。 2つの方程式の共通解を x=αとおいて、それぞれの方程式に代入すると 2a+ko+4=0 ①, a²+a+k=0 これをα, hについての連立方程式とみて解く。 ② ② から導かれる k=-α-a を ①に代入 (kを消去) してもよいが, 3次方程式と なって数学の範囲では解けない。 この問題では、最高次の項であるの項を消去す ることを考える。 なお, 共通の 「実数解」 という問題の条件に注意。 CHART 方程式の共通解 共通解を x=u とおく 共通解を x=α とおいて, 方程式にそれぞれ代入すると ①, a²+a+k=0.... ② 解答 2ω^+ka+4=0 ①-② ×2 から (k-2)a+4-2k=0 ゆえに (k-2)(a-2)=0 よって k=2 または α=2 [1] k=2のとき 3章 11 1 2次方程式 αの項を消去。 この考 え方は, 連立1次方程式 を加減法で解くことに似 ている。 の判別式をDとすると D=12-4・1・2=-7 D0 であるから,この方程式は実数解をもたない。 ゆえに、2つの方程式は共通の実数解をもたない。 2つの方程式はともに x2+x+2=0となり,この方程式 数学の範囲では, x'+x+2=0の解を求め ることはできない。 [2] α=2のとき ②から 22+2+k=0 よって k=-6 このとき2つの方程式は2x2-6x+4=0, x2+x-6=0 すなわち 2(x-1)(x-2)=0, (x-2)(x+3)=0 とな り,解はそれぞれ x=1,2; x=2, -3 < α=2を①に代入しても よい。 よって、2つの方程式はただ1つの共通の実数解 x=2 をもつ。 以上から k=-6, 共通解はx=2 注意 上の解答では, 共通解 x=α をもつと仮定してαやkの値を求めているから, 求めた値に対して, 実際に共通解をもつか, または問題の条件を満たすかど うかを確認しなければならない。 (at)

未解決 回答数: 1
1/401